
Developing Concurrent Web Applications with
Effect Handlers in Links

Steven Chang
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Electronics and Computer Science

School of Informatics
University of Edinburgh

2023

Abstract
This project focuses on the study of effect handlers in Links, a functional programming
language designed for developing web applications from the database to the client.
Effect handlers are a programming paradigm that provide abstraction for implementing
a variety of programming features, such as concurrency, within a programming language.
The main objective of this project is to investigate the potential of modular development
in concurrent programming with effect handlers in Links. Specifically, the project
aims to develop an effect handler switching mechanism that enables users to define
and switch between different effect handlers within the same application with minimal
changes to the code.

To achieve this objective, I used a web application that visualizes user-level threads
as lines on a canvas as a base application to demonstrate the behavior of the user-
level threads scheduler implemented by effect handlers. Then, I modified the base
application to enhance user experience and introduce new functionalities for concurrent
programming. Furthermore, I modularized the codebase to improve maintainability and
readability. Finally, I implemented schedulers with different scheduling mechanisms to
enable seamless switching between schedulers.

The results show that the final application has a significantly reduced codebase, and the
effect handlers switching mechanism works seamlessly among different applications
with minimal code changes. However, the limitations of the project include the mismatch
between effect handlers, event listeners for web component interaction, and actors in
the actor model in concurrent computation. The project concludes that the objectives
have been successfully achieved, and it provides valuable insights for future work in
this field.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Steven Chang)

ii

Acknowledgements
I would like to express my sincere gratitude to my dissertation supervisor, Sam Lind-
ley, for his constant support and invaluable feedback throughout my undergraduate
dissertation project. His expertise, insights, and constructive feedback have been instru-
mental in shaping my work and helping me overcome technical challenges. Without his
continuous support, this project would not have been possible.

Additionally, I would like to express my appreciation to Daniel Hillerström for his
assistance and technical support in understanding Links and effect handlers, which
greatly aided me in my dissertation work.

iii

Table of Contents

1 Introduction 1
1.1 Motivations . 1
1.2 Objectives . 2
1.3 Contributions . 3
1.4 Report Structure . 3

2 Background 4
2.1 Modern Web Development . 4
2.2 Links . 5

2.2.1 XML and DOM . 5
2.2.2 Event Listeners . 5
2.2.3 Foreign Function Interface 6

2.3 Effect Handlers . 6
2.3.1 Programming with Effect Handlers in Links 7
2.3.2 Code Example in Links . 8

2.4 Concurrent Programming with Effect Handlers 10
2.5 Related work . 11

2.5.1 React and React Fiber . 11
2.5.2 racing lines.links . 11

3 Base Application 13
3.1 Overview . 13
3.2 Three Priority Level . 14
3.3 User Interface Implementation . 15
3.4 Editing Priority of the Fiber . 18

4 Modularization 19
4.1 JavaScript FFIs . 19
4.2 Separation of Concerns . 21
4.3 Extract Effect Interface . 22

5 Schedulers and Case Studies 23
5.1 Time-based Scheduler . 24
5.2 Step-based Scheduler . 25
5.3 Probability-based Scheduler . 27
5.4 Switch Schedulers . 29

iv

5.5 Case Studies Implementation . 31
5.5.1 Case Study 1 . 31
5.5.2 Case Study 2 . 32
5.5.3 Case Study 3 . 33

6 Evaluation 34
6.1 Case Studies . 34

6.1.1 Case Study 1 . 34
6.1.2 Case Study 2 . 35
6.1.3 Case Study 3 . 35

6.2 Triumph . 36
6.3 Challenges: Mismatch Between Event Listeners and Effect Handlers . 36

7 Conclusion and Future Work 39
7.1 Future Work . 39

Bibliography 41

A Complete code for racing lines demo 44
A.1 Case Study 1 . 44
A.2 Case Study 2 . 48
A.3 Case Study 3 . 52
A.4 fiberInterface.links . 56
A.5 lineDrawer.links . 57
A.6 runtime.js . 58
A.7 Time-based Scheduler . 59
A.8 Step-based Scheduler . 64
A.9 Probability-based Scheduler . 67

v

Chapter 1

Introduction

In this project, I explored the use of effect handlers in web development using the
Links programming language. The primary objective is to enhance the modularity and
accessibility of concurrent programming with effect handlers by allowing users to easily
define and switch their own effect handlers within the client code. I achieved this by
implementing various user-level thread schedulers using Links and effect handlers, with
a focus on enabling users to switch between different effect handlers with minimal
changes to the client code. This project successfully demonstrated a proof of concept
that encapsulates effect handlers as independent modules, offering a more efficient and
flexible approach for concurrent programming in the context of web development using
effect handlers. The code related to this project is available at https://github.com/
Steven-Chang1114/effect_handler_links.

1.1 Motivations

Links [22] is a functional programming language that aims to simplify web program-
ming by providing a unified language for all tiers of a web application, which includes
the client-side, server-side, and database. To achieve this, Links translates code into
the appropriate languages for each tier, such as JavaScript for the browser, Java for the
server, and SQL for the database. Additionally, Links supports features that facilitate
web development, including manipulation of the Document Object Model (DOM) and
event listeners [5]. Furthermore, Links allows for concurrency on both the client and
server-side [5], which enables users to create web applications that can handle multiple
tasks simultaneously.

In contrast to conventional web development technologies, Links offers effect handlers
[12] as an abstraction for managing effects such as exceptions, input/output operations,
and state changes in a modular and composable way. An effect is defined as an operation
that can be performed, while a handler is a function that specifies how to interpret those
operations [12]. By separating the definition of effects from their implementation, effect
handlers provide a modular and composable way of handling operations in a program,
resulting in more flexible and maintainable code. One of the practical applications of
effect handlers is their ability to express concurrency in programming languages.

1

https://github.com/Steven-Chang1114/effect_handler_links
https://github.com/Steven-Chang1114/effect_handler_links

Chapter 1. Introduction 2

Previous research on the use of effect handlers for concurrent programming has been
mostly focused on the system level, despite the growing popularity of effect handlers in
recent years. For instance, Multicore OCaml has provided a concurrency library that is
implemented with effect handlers [6]. Links, on the other hand, is the first programming
language that can build client-side web applications incorporating concurrency through
the use of effect handlers.

Meanwhile, the field of web development has experienced a rapid growth over the
past three decades, evolving from plain HTML, CSS, and JavaScript in 1995, to more
powerful libraries like jQuery [30] in 2006, and then to modern front-end frameworks
such as React [28] in 2013, followed by Vue [32] a year later. Nowadays, these
frameworks are exploring new possibilities, with Vue introducing its concurrency
library [31] and React exploring functional programming paradigms. Specifically, React
developers have been inspired by algebraic effects and have made progress integrating
similar features into the React framework, such as React Hooks [27]. However, these
features are more of a mimic of the effect handlers structure, as JavaScript does not yet
fully support this feature.

Hence, compared with the other functional programming languages and web develop-
ment technologies mentioned above, Links has its natural advantage as a functional
programming language that is designed for building web applications and already sup-
ports the implementation of the effect handlers. As a result, this project aims to explore
the possibility of effect handlers using Links in the context of web development. The
primary focus of this project is to explore concurrent programming with effect handlers,
which is becoming an important aspect of modern web development with all popular
frameworks aiming to integrate concurrent mode into their production workflow.

1.2 Objectives

Daniel Hillerström and Nicole Meng demonstrated that effect handlers in Links can
be used for concurrent programming by implementing user-level threads and their
schedulers in Links, as presented in their previous work called racing line.links [11].
However, there is still room for improvement by implementing modular development for
concurrent programming with effect handlers in Links. This project aimed to enhance
this aspect by allowing users to easily and conveniently define and switch their own
handlers within the client code.

To achieve this, the primary objective of this project was to develop various user-level
thread schedulers using Links and effect handlers, each having different scheduling
mechanisms. Afterwards, these effect handlers were integrated into the main application,
allowing users to easily switch between them with minimal changes to the client code.
Furthermore, several applications with distinct behaviors were implemented as case
studies to test and demonstrate the versatility of this effect handler switching mechanism.

Chapter 1. Introduction 3

1.3 Contributions

In this project, I adapted the existing codebase of racing line.links [11] and accom-
plished the following objectives:

• Enhanced the user experience of racing line.links

• Expanded the scheduler to support three different priorities of the user-level
threads, and the ability to modify priority levels

• Performed the separation of concerns to make the application code more readable
and maintainable

• Extracted the effect interface into separate module

• Designed and implemented three different types of schedulers

• Modified the client to allow seamless adding, removing, and switching between
the effect handlers

• Designed and implemented three different applications for visualizing user-level
threads as case studies to evaluate the switching mechanism

With these contributions, I have successfully demonstrated a proof-of-concept demo
that allows users to plug in different effect handlers into the client code with minimal
effort. This highlights the feasibility of encapsulating effect handlers as independent
modules and the ability to plug in different effect handlers for the same computational
context without the need to rewrite the entire client code. The new structure offers a
more efficient and flexible approach by keeping the client code generic when changing
effect handlers for different behaviors.

1.4 Report Structure

The remainder of the report is structured as follows:

Chapter 2 provides an introduction to modern web development techniques and an
overview of the Links programming language, including its syntax and relevant features.
It also covers a discussion of effect handlers and concurrent programming using effect
handlers, along with related work to provide context for the project.

Chapter 3 provides a detailed discussion of the modifications made to the base applica-
tion to enhance user experience and introduce new functionalities.

Chapter 4 presents the steps taken to modularize the codebase to improve its overall
quality, readability, maintainability, and modularity.

Chapter 5 presents the design and implementation of schedulers with different schedul-
ing mechanisms and introduces different case studies to evaluate the schedulers.

Chapter 6 evaluates the final work and discusses the challenges encountered during the
development process.

Chapter 7 concludes the work and suggests possible future improvements.

Chapter 2

Background

2.1 Modern Web Development

The emergence of modern web development technologies marked a significant change in
the evolution of the World Wide Web. With the advent of HTML, CSS, and JavaScript,
these three technologies formed the backbone of modern web development. Hypertext
Markup Language (HTML) [15] provided the basic structure and content of web pages,
while Cascading Style Sheets (CSS) [33] is used to add styling to web pages, such as
font, colors, and layout. JavaScript [16], on the other hand, enables the creation of
interactive and responsive web applications. The integration of these three technologies
has paved the way for the creation of functional and engaging websites that could be
accessed from any device, anywhere in the world.

One of the very important and fundamental concepts in web development is the Doc-
ument Object Model (DOM) [7]. It is an essential feature that allows developers to
interact with HTML or XML documents dynamically. The DOM is a tree-like structure
where each node represents an element in the document. With the DOM, developers
can dynamically change the style, content, and structure of a web page in response to
user interactions or other events.

Another fundamental concept in web development that is used closely with DOM is
event listeners [34] which allow developers to write code that can respond to user events
on a web page. An event is simply an action that happens in the browser, such as
clicking, scrolling, or hovering over an element. By accessing these elements through
the DOM and adding event listeners, developers can detect these events and trigger
specific behaviors in response. This functionality allows web applications to respond to
user input in real-time, enhancing the overall user experience.

In contrast to HTML, Links uses XML to create web pages and has its own set of DOM
operations for XML documents and event listeners using l-event attributes [5]. Further
details about the key features of Links will be explained in the next section.

4

Chapter 2. Background 5

2.2 Links

In traditional web development, developers are required to be proficient in a variety
of programming languages, including HTML, JavaScript, Java, Python, and SQL, to
build full-stack applications. For beginners, this can be particularly challenging, and
the process of linking these languages together can be overwhelming. Moreover, as
developers attempt to integrate the client, server, and database, they often encounter
the impedance mismatch problem [5], which arises when data must be converted to
the corresponding acceptable data types between each tier. This can be a significant
limitation for developers seeking to build modern, efficient web applications.

Links was developed to address these issues. As a strict, typed functional programming
language, it aims to overcome the challenges of mastering multiple programming
languages and the impedance mismatch problem in web development. It provides a
single source code for all tiers of a web application, including client-side, server-side,
and database. However, due to its research-oriented nature, there are limited resources
available for learning Links, and most of the available resources are in the form of
example codes and Links Wiki page [23] on GitHub. The following sections aim to
introduce some of the essential features in Links to enhance the understanding of this
project.

2.2.1 XML and DOM

In contrast to HTML, Links uses XML notations to construct web pages [5]. The syntax
for the XML notations is similar to HTML, with the tag name enclosed in <#>...</#>
syntax. The XML document is maintained by the client as a tree data structure, which is
comparable to the DOM. Links offers two types of operations: DOM, which is mutable,
and XML, which is for inspection only [5]. It also provides a set of conversion functions
to convert custom data types to XML and insert them into the selected nodes. The full
operations and functions reference can be accessed through the Links documentation
[20].

2.2.2 Event Listeners

In order to enable interaction with the DOM, Links has provided syntax for defining
event listeners in the XML code using attributes known as l-event attributes [20]. The
format of these attributes is l:name, with l: serving as the prefix and name representing
the event name. These l-event attributes must be assigned with a function that will be
executed when the event is triggered [5]. For example,

<button l:onclick="onClick()">Click me</button>

This indicates the onClick() function is invoked when the button element is clicked.
The complete list of event listeners available in Links can be found in the Links
documentation [20].

Chapter 2. Background 6

2.2.3 Foreign Function Interface

In the context of web development, Links has the ability to call JavaScript functions
directly within the Links program through the use of Foreign Function Interface (FFI)
[21]. The FFI is made possible because modern web browsers run on JavaScript engines,
and Links code on the client side is ultimately compiled into JavaScript code during
runtime. By providing this feature, it offers extensive flexibility during the development
process, enabling smooth collaboration between Links and JavaScript features, opening
up new opportunities for developers.

A quick walkthrough on how to use JavaScript FFI in Links can begin by defining a
function in a JavaScript file. The following code illustrates an example of how this can
be done:

// js/log.js
function _logMessage(msg) {

return console.log(msg);
}

var logMessage = LINKS.kify(_logMessage);

In the above example, logMessage(msg) is a standard JavaScript function that logs the
value of the msg variable in the console of the browser when it is called. This function
is then wrapped inside a conversion function called LINKS.kify [21], which produces
another function called logMessage that can be accessed in the Links program.

On the Links side, the JavaScript functions can be imported as a module (Log) for the
entire program to access. To achieve this, the alien keyword is used in the module block
that specifies the external language (javascript) and the file path of the JavaScript
function. The following code block shows an example:

// log.links
module Log {
alien javascript "js/log.js" {
logMessage : (String) ˜%˜> ();

}
}

Inside the alien block, the name and the types of the foreign function should be
provided. Then the logMessage function can be assessed within the Links program by
calling Log.logMessage("Hello World").

2.3 Effect Handlers

Algebraic effects handlers are a feature in functional programming where the concept
of algebraic effects was first introduced by Plotkin and Power [24], and later, algebraic
effect handlers were introduced by Power and Pretnar [25]. The purpose of the algebraic
effects handlers is to structure effectful programs in a modular and compositional way.
This is accomplished by separating the effects into operations for expressions and

Chapter 2. Background 7

handlers for implementations (discussed in Section 2.3.1.1 and 2.3.1.2) using delimited
continuations [9]. This approach enables the programs to pause, resume, and switch
between different computation contexts, allowing them to express complex control-flow
operations such as I/O, exception, state management, and concurrency. For consistency,
the terms effect and effect handlers will be used instead of algebraic effect and algebraic
effect handlers.

The concept of effect handlers was mostly focused on its theoretical aspects in the early
stages of the development. However, in recent years, there has been a growing interest
in the applicability of effect handlers. As a result, a variety of implementations of effect
handlers have emerged, ranging from programming languages to libraries [3, 6, 13, 18].

In the effect handlers implementation, an effect is conceptualized as a signature of
operations [19]. Operations are defined by the developers, and they can be thought of
as abstract interfaces that describe the desired effect such as Get or Set. The concrete
implementation of the operations, on the other hand, is defined by the effect handlers.
Effect handlers provide a way to interpret these operations by defining a custom function
that implements the behavior for the effectful operation. The following section will
delve into the implementation details of effect handlers in Links.

2.3.1 Programming with Effect Handlers in Links

In Links, a handler function is defined with one parameter: the program’s computation
context. The handler function then defines the operation definition for each effectful
operation as well as its concrete implementation. The operation definition accepts two
kinds of arguments: the payload passed into the function, and the captured continuation.
The upcoming sections will provide a more detailed explanation of operations and
handlers in Links.

2.3.1.1 Operation

Operation is like a function that will produce an output after being performed [12].
The operation itself does not have any semantical meaning towards the program, and
the actual implementation of the operation is defined entirely by the handlers. By
convention, when defining an operation, the name should start with a capital letter and
should not be left unhandled in the program or otherwise an error will be raised. In order
to perform an operation, the syntax is do Operation(arg1, arg2, ..., argn).

2.3.1.2 Handlers

The syntax for implementing handlers in Links is similar to the switch statement in
imperative programming or pattern matching in functional programming:

handle(m) {
case <Op1 => k> -> # Implementation for Op1
case <Op2(p1, p2,..., pn) => k> -> # Implementation for Op2
case <Op3(p1, p2) => k> -> # Implementation for Op3
...

Chapter 2. Background 8

case x -> x
}

The handle function takes in the computation context m as input. For every operation
that is performed within the computation m, it will be mapped to the corresponding
operation definition inside the case block for execution. The case block is composed
of two elements: the operation definition, and its concrete implication. The operation
definition can have any number of parameters, followed by a captured continuation k at
the end, using the => syntax. k is represented as a function that can take one or more
arguments when invoking. By calling k, the control flow of the program is transferred
back to the point in m where the operation was performed [12]. Finally, the case x ->
x statement is an implicit return statement that will be executed after the computation m
has completed its execution.

2.3.2 Code Example in Links

A straightforward way to explain the implementation of effect handlers in Links is
through a series of examples. We begin with a program that prints two strings “Hello”
and “World” in sequence. Without effect handlers, it is straightforward to implement in
Links:

fun printMessage() {
print("Hello\n");
print("World\n");

}

Which yields

Hello
World
() : ()

When you call printMessage()

2.3.2.1 Printing with Effect Handlers

To integrate effect handlers into this example, the print method can be transformed
into an operation named Print. Then, a handler called forward can be defined to
handle the printMessage function as the computation context and interpret the Print
operation inside the printMessage function.

fun printMessage() {
do Print("Hello\n");
do Print("World\n")

}

fun forward(m) {
handle(m()) {

case <Print(val) => k> -> print(val); k(())

Chapter 2. Background 9

case x -> ()
}

}

To execute the function, we can call forward(printMessage) and it will yield the
same result as the previous example:

Hello
World
() : ()

It first replaces print method into Print operation inside printMessage function,
and then when executing the program, printMessage is passed to the forward handler
as the computation m. Therefore, by invoking printMessage inside the handler, Print
operation will be performed, then captured and handled by the forward handler.

The concrete implementation for each operation is defined in the case patterns inside
forward handler. In this example, after performing Print operation, it will first be
mapped to the Print case in the handler where it receives two arguments, val as the
actual parameter being passed into Print operation, and k which is the continuation
function. In the Print case, print method is invoked before the continuation function
k, which means the execution will be in order. Therefore in the program "Hello" is
printed before "World".

2.3.2.2 Continuation

It might seem unnecessary to convert two lines of code into more complicated structures
with effect handlers. However, a powerful feature in effect handlers is that the developers
can manipulate the functions’ order of executions in a program by making use of the
continuation k.

Now on top of the previous example, if we want to print the same strings but show them
in the reverse order without changing the order of invocation in printMessage, the
continuation in effect handlers can be handy when dealing with this issue:

fun reverse(m) {
handle(m()) {

case <Print(val) => k> -> k(()); print(val)
case x -> ()

}
}

We defined a new handler called reverse, and then when interpreting Print operation
inside the reverse handler, the continuation k is called first, which means print(val)
will only be invoked after k is finished executing. By wrapping the program continuation
into a function variable enables the developer to easily take control over the call stack
of the program. Now if we call reverse(printMessage), the result will be:

World
Hello

Chapter 2. Background 10

() : ()

As demonstrated, by simply switching different effect handlers to interpret the same
operation, the order of printing can be controlled without modifying the printMessage
function.

2.4 Concurrent Programming with Effect Handlers

While the section above only provides simple examples of effect handlers, it demon-
strates some of their powerful features. Modularity, particularly, is highlighted as one
of the strengths of effect handlers because they provide a way to separate the implemen-
tation from the expression of the effectful computation. Additionally, with the use of
delimited continuation, which enables the pausing, resuming, and switching between
computational contexts, effect handlers are ideal for implementing a user-level thread
scheduler that can achieve concurrency.

Effect handlers also offer the advantage of writing concurrent programs in direct style,
making them more readable and easier to debug. Compared with continuous-passing
styles (CPS) which is callback-oriented, using direct-style code can usually reach
better performance, as there are fewer function calls and less overhead associated with
managing continuations [2]. In Multicore Ocaml, relevant work had already been
deployed by implementing asynchronous effects and their handlers to construct an
asynchronous I/O library using direct style programming [6].

In Links, concurrent programming is supported by using message passing, known
as actor model [10]. In the actor model, the basic building blocks of the concurrent
computation are “actors”, which can be thought of as lightweight agents or objects
that can react to incoming messages and perform actions based on their internal state.
Actors communicate with each other through asynchronous message-passing, which
means that they send and receive messages without waiting for a response. This enables
concurrency and prevents potential deadlocks and race conditions that can occur in
traditional shared-memory concurrency models. Finally, Links programs are compiled
into JavaScript using CPS translation [14] in order to preserve concurrency on the client
side.

Given the fact that Links supports effect handlers, it presents an alternative to actor
models for achieving concurrency in Links. Specifically, effect handlers in Links enable
us to implement a user-level thread scheduler that can facilitate concurrent programming.
The following section will first demonstrate a state-of-art implementation deployed
in the field of web development that enables concurrent operations, followed by a
web application developed in Links that illustrates the practicality of implementing
concurrency using effect handlers in Links.

Chapter 2. Background 11

2.5 Related work

2.5.1 React and React Fiber

React is a popular JavaScript library for building user interfaces [28]. One of the key
features of React is the creation of a virtual DOM [29], which allows it to efficiently
update the browser DOM only where necessary, resulting in faster and more efficient
rendering of components.

React Fiber [17] is a new implementation of React’s core algorithm, which aims to
make React faster, more efficient, and more intelligent. It is a complete rewrite of the
older versions of React’s reconciliation algorithm and is now the default reconciler
for React 16 and newer versions. The name ”Fiber” comes from the use of fibers to
represent nodes in the DOM tree.

One of the primary features of React Fiber is its ability to pause, resume, and prioritize
updates during the reconciliation process [8]. This allows React to interrupt an update
in progress to handle a higher-priority update, and then resume the original update when
the higher-priority update is complete. This makes React more responsive and efficient,
especially in cases where there are a large number of updates or complex animations.

React Fiber’s ability to prioritize updates is also critical for applications with complex
UIs. By giving priority to updates that require immediate attention, React Fiber can
ensure that the user interface remains responsive even when there are multiple updates
happening simultaneously. Overall, React Fiber represents a significant improvement
to the React library, making it more efficient, more responsive, and more capable of
handling complex and dynamic user interfaces.

2.5.2 racing lines.links

As with the React Fiber example discussed earlier, there is a similar implementation
in Links built by Daniel Hillerström and Nicole Meng in the official Links GitHub
Repository called racing lines.links [11] that mimics the interruption and resump-
tion behaviors of user-level threads with different priorities. This program visualizes
the user-level threads, also known as fibers, as lines that are rendered on the canvas.
Throughout this report, the term “fiber” will be used to refer to these lightweight
user-level threads for consistency.

The user interface of racing lines.links contains a rectangular canvas, two drop-
down menus, and one button. The rectangular canvas at the top is where the fibers are
displayed. The dropdown menu offers 6 colors and 2 priority levels, namely, “Low”
and “High”. Users can then select their desired line color and priority level for the fiber
from the dropdown menu. Once they have made their selections, they can render the
chosen fiber as a horizontal line on the canvas by clicking the “Draw Line” button.

In Figure 2.1 and 2.2, the process of creating four fibers is shown. First, the green
fiber with low priority is created, followed by the red fiber with high priority, then
the blue fiber with low priority, and finally the yellow fiber with high priority. It can
be observed that, although the green fiber is the first to be created, it is interrupted

Chapter 2. Background 12

Figure 2.1: Rendering process of the High-
priority fibers

Figure 2.2: Rendering process of the Low-
priority fibers

during its rendering process by the red fiber because the red fiber has a higher priority.
Similarly, the rendering process of the blue fiber is also blocked due to the fact that it
has lower priority than the red fiber. On the other hand, since the yellow fiber has the
same priority as the red fiber, both fibers will be rendered alternatively. The green and
blue fibers can only resume their rendering process after the red and yellow fibers finish
rendering and give control back to the lower-priority fibers. Then, they will resume their
rendering process and render alternatively until they complete their rendering process.

The racing lines.links program is implemented using effect handlers to create a
fiber scheduler. The scheduler uses two operations, Fork and Yield, to create fiber
instances and control their interruption and resumption. The fibers are maintained in a
scheduler queue and will be popped out from the queue once they finish their execution.

Chapter 3

Base Application

This section builds upon the foundation laid out in Section 2.5.2, which serves as the
base application for our project. Here, I present the specific details of the design and
implementation of modifications that were made to the base application with the aim of
improving user experience and introducing new functionalities.

3.1 Overview

The user interface design of the application has been revised to enhance the user
experience that facilitates the testing and evaluation process. To simplify the process
of creating fibers with different priorities, the color and priorities dropdown menu has
been merged into one. Instead of allowing users to select from six different colors, each
priority level can be assigned a specific color, such as red for Low priority and green
for High priority. This change allows users to create fibers as lines on the canvas more
efficiently with just one click instead of three. Additionally, each priority level has been
assigned a specific color, making it easier for users to identify the state of the fibers.
These improvements enable users to focus on the main task of the application, which
is to create fibers and observe their behaviors when encountering fibers with different
priorities that may preempt the control flow. A detailed description of the user interface
implementation will be provided in Section 3.3.

To enhance the user experience of the application and show the strength of Links in
concurrent programming, the application can be further improved by providing more
priority levels for fibers. In addition to Low and High, a medium-priority Fiber can
be introduced, represented by the color blue. This new priority level would allow the
fiber to preempt the control of a low-priority fiber but would need to give up the control
to high-priority fibers. This expansion of priority levels offers more possibilities for
visualizing fiber behavior and allows users to explore a wider range of scenarios. More
importantly, by introducing three priority levels, Links can demonstrate its superiority
in concurrent programming compared to other modern front-end frameworks. For
instance, React’s Concurrent Mode [26] only supports two levels of priority due to the
single-threaded nature of JavaScript. The specific implementation of the user interface
with three priority levels will be discussed in Section 3.2.

13

Chapter 3. Base Application 14

In order to expand the capabilities of Links in concurrent programming, it is necessary
to increase the level of control over the fiber scheduler. The goal is to have better
management over the fibers, such as the ability to retrieve and modify the priority
level of fibers. To achieve this objective, two new operations, namely GetPrio and
SetPrio, can be defined and added to the effect handler. Currently, the effect handler
only provides the functionality to create a new fiber and yield control from one fiber
to another. These new operations provide developers with more options to manipulate
the fibers. Further details regarding the implementation of SetPrio and GetPrio will
be presented in Section 3.4, highlighting the potential benefits of Links in concurrent
programming.

3.2 Three Priority Level

.

Figure 3.1: PrioQueue behavior for fibers with different priorities

The addition of one more priority level is being implemented first as it is the core
functionality of the program. Before discussing the technical details of how to add the
additional priority level, a brief overview of how fibers are created, stored, and scheduled
by the schedulers is necessary. Each fiber has two states, prio and f, representing its
priority level and the function that will be executed when the fiber is scheduled. In the
two priority levels setting, fibers are stored in separate priority queues for Low and
High priority. These two priority queues are combined into one data structure called
PrioQueue for better management. During the enqueue stage, fibers are enqueued to
their respective priority queues based on their prio value. During the dequeue stage,

Chapter 3. Base Application 15

high-priority fibers are dequeued first, followed by low-priority fibers only if the High
Priority Queue is empty. This ensures that high-priority fibers can always run before
low-priority fibers when performing the Yield operation. A diagram illustrating how
the PrioQueue work is presented in Figure 3.1.

The fiber scheduler, which is responsible for managing all the fibers, is implemented
using effect handlers and interprets two operations: Fork and Yield. While Section
5 provides a detailed explanation of the fiber scheduler, this section focuses on pri-
ority processing. In the Yield operation definition, its implementation processes the
rendering operations on the canvas and yields control to other fibers depending on
the scheduling mechanism. In the Fork operation definition, it determines whether
the newly forked fiber should interrupt the current running fiber or be stored in the
PrioQueue for later use using a switch statement. To add another priority level, it is
necessary to modify the PrioQueue data structure to accommodate the new priority
level, adjust the enqueue and dequeue logic accordingly, and change the implementation
of the Fork and Yield operations.

The modifications made include defining a new queue for fibers with medium priority
to the PrioQueue data structure, as well as modifying the priorityEnqueue and
priorityDequeue functions to accommodate this change. The structure of the new
PrioQueue has been illustrated in Figure 3.2.

.

Figure 3.2: new PrioQueue structure

Furthermore, in order to integrate the new PrioQueue structure to the fiber scheduler,
the Fork operation definition was also modified to incorporate the relationship between
low, medium, and high-priority fibers, allowing newly created fibers to preempt lower-
priority fibers and enqueued into the PrioQueue if the current running fiber has a higher
priority. The Yield operation was also updated to include the rendering process for
fibers with medium priority. A more detailed explanation of the fiber schedulers can be
found in Section 5.

3.3 User Interface Implementation

Now that the implementation of the three priority levels is complete, the focus can now
shift towards improving the user interface of the application. As shown in Figure 3.3,
the current process of creating a new fiber requires users to interact with two separate
dropdown menus to select the color and priority of the fiber, followed by clicking the
”Draw Line” button, which involves three clicks. This process can be further simplified
by reducing the number of clicks required to create a fiber to one, providing users with
greater convenience and more straightforward control over the creation of fibers.

Chapter 3. Base Application 16

In the current implementation of the application, the buttonPressed function is linked
to the button tag in the code using l-event attributes. This function will be executed
when a click event on the button is detected. It retrieves the values for priority and color
using the getValueFromSelection function, and then it uses a switch statement to
determine the priority level of the fiber, with the appropriate action taken based on the
priority level. The code for the buttonPressed function is shown below:

fun buttonPressed(){
var prio = getValueFromSelection("prio");
var f = setUpLineDrawing(getValueFromSelection("line-color"));
switch(prio){

case "High" -> sysEnqueue(makeFiber(High, f))
case "Medium" -> sysEnqueue(makeFiber(Medium, f))
case "Low" -> sysEnqueue(makeFiber(Low, f))
case _ -> ()

}
}

Based on the design choice discussed in Section 3.1, the two dropdown menus and the
”Draw Line” button can be simplified into one single button for users. This new button
should enable users to create a fiber with a fixed color and priority level. In order to
achieve this, three buttons are needed, with each button responsible for creating fibers
of a specific color and priority level. For example, green represents high-priority fibers,
blue represents medium-priority fibers, and red represents low-priority fibers. The
implementation can be accomplished by replacing the HTML code for the dropdown
menus and button with the new code for the three buttons. Additionally, since the
dropdown menus are no longer necessary, the buttonPressed function can be updated
to hardcode the values for priority and color. As a result, the existing code can be
replaced from:

<div class="selection margin-10 center">
<select id="line-color">

<option value="red">Red</option>
<option value="green">Green</option>
<option value="blue">Blue</option>
<option value="yellow">Yellow</option>
<option value="#801638">Berry </option>
<option value="#027878">Teal</option>

</select>
<select id="prio">

<option value="Low">Low</option>
<option value="Medium">Medium</option>
<option value="High">High</option>

</select>
</div>
<button class="block button center" l:onclick="{buttonPressed()}">

Draw Line
</button>

Chapter 3. Base Application 17

to the new code as shown below:

<div class="selection margin-10 center">
<button

class="block button center"
l:onclick="{buttonPressed("Low", "red")}">
Draw Low Line

</button>
<button

class="block button center"
l:onclick="{buttonPressed("Medium", "blue")}">
Draw Medium Line

</button>
<button

class="block button center"
l:onclick="{buttonPressed("High", "green")}">
Draw High Line

</button>
</div>

The proposed modifications to the user interface simplify the process of creating fibers
and improve user experience by making the interface more intuitive and user-friendly.
Additionally, these changes result in cleaner and more maintainable code. It is important
to note that the function signature of buttonPressed is modified to receive hardcoded
color and priority values as arguments, which leads to a revised implementation for
buttonPressed. The new function implementation is shown below:

Figure 3.3: Before modification Figure 3.4: After modification

fun buttonPressed(prio, color){
var f = setUpLineDrawing(color);
switch(prio){

Chapter 3. Base Application 18

case "High" -> sysEnqueue(makeFiber(High, f))
case "Medium" -> sysEnqueue(makeFiber(Medium, f))
case "Low" -> sysEnqueue(makeFiber(Low, f))
case _ -> ()

}
}

Finally, the user interface before and after the modifications are displayed in Figure 3.3
and Figure 3.4, respectively.

3.4 Editing Priority of the Fiber

As I described in Section 2.3.1.2, defining an operation inside the effect handlers
requires providing both of its definition and implementation. Defining the GetPrio
operation is straightforward since the state of the fiber can be accessed by having an
additional parameter in the handle function. Therefore, every time this operation is
captured by the handlers, its current priority level can be returned upon resumption.

The SetPrio operation is more challenging to implement than GetPrio since it requires
updating both the priority level in the fiber’s state and its position in the correct Priority
Queue inside the PrioQueue data structure shown in Figure 3.2. To implement SetPrio,
a parameter p for priority level is defined in the operation definition, and a helper
function called newPrioToFiber is defined. This function takes p as an argument,
creates a new fiber with the same information as the original fiber but with the priority
level changed to the selected level p, and enqueues this new fiber into the appropriate
Priority Queue in PrioQueue. The scheduler will then yield control to the next fiber
according to its scheduling mechanism.

The implementation code for GetPrio and SetPrio operations is presented below. The
variable state holds the current state of the fiber’s scheduler, including its priority
level and the PrioQueue data structure. This state is passed to the handler function, so
that the operations can be executed within the context of the current fiber’s state. As
the fiber interacts with the operations defined in the program, the state parameter is
updated throughout the execution of the fiber.

handle(fiber.f()) (state <- (prio=fiber.prio, runQ=runQ)){
case x -> runNext(poll(state.runQ))
case <GetPrio => resume> -> resume(state.prio, state)
case <SetPrio(p) => resume> ->

var q = fiberEnqueue(
newPrioToFiber(resume, p),
state.runQ

);
runNext(poll(q))

case <Fork(f) => resume> -> ...
case <Yield => resume> -> ...

}

Chapter 4

Modularization

In the current implementation, all functionalities of the application, including the
HTML, CSS code for the web interface, the JavaScript FFI for handling the drawing
function on the canvas, Links code for maintaining the scheduler queue, and the fiber
scheduler implemented using effect handlers, are all contained in one file. It would be
more desirable to separate these functionalities into different modules, which aligns
with standard software engineering coding practices [1]. This would not only make
the code more organized and easier to maintain, but also improve its reusability and
extensibility in the long run. To achieve this, the application can be first broken down
into separate functionalities as follows:

• HTML and CSS code for the web user interface

• Links code for the fibers and fiber schedulers

• Links code for the scheduler queues, including its enqueue and dequeue function-
alities

• Links code for the user interaction

• Links code for handling drawing functionalities

• JavaScript FFIs for accessing the actual canvas rendering functionalities and
maintaining the fibers

The process of separation has been divided into two sections. Section 4.2 focuses on
the modularization process, which separates each individual functionality into separate
modules. On the other hand, Section 4.3 focuses on the separation process specifically
in the context of effect handlers.

4.1 JavaScript FFIs

Before proceeding with the separation process, it is necessary to discuss the role played
by JavaScript FFIs in the application. The main application involves two JavaScript
FFIs: one to render the lines on the canvas using Canvas API (canvas.js), and the
other to manage fibers in the JavaScript runtime by providing a similar scheduler queue

19

Chapter 4. Modularization 20

structure in the runtime.js. While the purpose of canvas.js is straightforward,
which is to provide Links access to the drawing methods in the Canvas API, the purpose
of runtime.js may not be immediately obvious. It might seem redundant to define
another scheduler queue in the JavaScript runtime when a PrioQueue structure is
already defined within the Links program.

.

Figure 4.1: How external scheduler queue interacts with PrioQueue

The main purpose of having this additional scheduler queue also known as the external
scheduler queue in runtime.js is to temporarily store the newly created fibers triggered
by button-click events. The reason for requiring two separate queues to maintain fibers
is explained in detail in Section 6.3. This external scheduler queue includes its own
enqueue and dequeue functions. When a button is clicked, the application creates a

Chapter 4. Modularization 21

new fiber using the makeFiber function. Instead of performing a Fork operation, the
enqueue function of the external scheduler queue is called, and the new fiber is added to
this queue. Then, when the scheduler decides to yield control to other fibers, it first calls
the dequeue function of the external scheduler queue to load the fibers from the external
queue into the actual PrioQueue. The scheduler then selects the next appropriate fiber
in the PrioQueue to run according to its scheduling mechanism. The entire process of
fiber creation and yielding has been presented in Figure 4.1.

4.2 Separation of Concerns

Prior to modularizing the application, it is important to analyze the relationships and
dependencies between its functionalities. According to the functionalities listed earlier
in Section 4, each one can be separated into its own module. For example, the main
application should only contain the user interaction code, while other operations, such
as drawing and styling, should be separated into independent modules. Additionally,
the scheduler can be divided into separate modules for the scheduling mechanism and
the scheduler queue. This approach can help to manage the codebase more effectively
and improve overall code quality.

After the separation process, the file racingLines.links will have dependencies on
the files racingLines.css and lineDrawer.links, while scheduler.links will
depend on queue.links. Furthermore, the two JavaScript files, namely canvas.js
and runtime.js, are being used for the JavaScript FFI, which will be utilized in
both scheduler.links and racingLines.links. The file structure of the applica-
tion before and after the separation of concerns is shown in the left and right panels,
respectively.

/
/js

runtime.js
canvas.js

racing lines.links

/
/js

runtime.js
canvas.js

/css
racingLines.css

scheduler.links
LineDrawer.links
queue.links
racingLines.links

The separation of the code into individual modules not only allows developers to work
on specific functionalities without conflicts, but also makes it easier to identify and
resolve bugs, since issues can be isolated to specific modules, thereby improving the
stability and reliability of the application.

Chapter 4. Modularization 22

4.3 Extract Effect Interface

To achieve the primary objective of providing a more convenient approach for the
application to use different effect handlers on the same effectful operations, it is essential
to extract the effect interface, which represents the signatures of the effectful operations,
into its own module. This separation ensures the application executes on the same
operation sets, regardless of the effect handlers (schedulers) that integrate. This allows
to integrate various implementations of scheduling mechanisms on the same operations.

The application includes four operations, namely, Fork for creating a new fiber, Yield
for yielding control to another fiber, and GetPrio and SetPrio for getting and set-
ting the priority level of the fiber. These four operations are wrapped by corre-
sponding effect interfaces and functions, which are extracted into a new file called
fiberInterface.links. Additionally, certain utility functions such as makeFiber
are also included in this file, as they are related to the functionality of fiber creation.

After this modification, the racingLines.links and scheduler.links modules will
incorporate the functionalities and types offered by the fiberInterface.links mod-
ule to create and manipulate the fibers. The updated file structure is as follows:

/
/js

runtime.js
canvas.js

/css
racingLines.css

scheduler.links
LineDrawer.links
queue.links
fiberInterface.links
racingLines.links

Chapter 5

Schedulers and Case Studies

The heart of this project is the scheduler, which works in conjunction with the PrioQueue.
To achieve our objective stated in Section 1.2, it is necessary to implement multiple
schedulers with different fiber scheduling mechanisms. This serves as the foundation for
the later implementation in Section 5.4 which focuses on enabling the easy switching of
schedulers within the application. The objective is to make the application run smoothly
while also making it easy for developers to switch between different effect handlers
with minimal code changes. Ultimately, the aim is to simplify the process enough
that only a few lines of code are necessary to switch between different effect handlers.
Additionally, to demonstrate the versatility and applicability of the effect handlers
switching approach, three case study applications with distinct rendering behaviors are
designed and implemented.

.

Figure 5.1: Flowchart of how the fiber scheduler operates

Before delving into the specific design and implementation of each different fiber
scheduler, it is important to provide an overview of how a fiber scheduler operates in
general. When a fiber is created, the scheduler compares its priority level with the
currently running fiber to determine whether it should be executed. Then the unselected
fiber is enqueued into the PrioQueue, while the selected fiber is executed by rendering

23

Chapter 5. Schedulers and Case Studies 24

a slice of lines on the canvas until the scheduler decides to yield control. If the executing
fiber is not finished when control is yielded, it is re-enqueued to the PrioQueue. On
the other hand, if it finishes its execution, it simply returns. The scheduler then selects
the next fiber from the PrioQueue by calling its dequeue function. The entire process
repeats until the queue is empty. The flowchart of the scheduler operation is illustrated
in Figure 5.1. In this figure, the conditional block enclosed with the dashed line will
be determined by the scheduling mechanisms from each scheduler. With this basic
understanding, we can now proceed to explore the specific design and implementation
of each different fiber scheduler.

The following sections present the design for the three schedulers that are developed:
time-based, steps-based, and probability-based schedulers. Each section provides an
overview of how the scheduler operates, along with a diagram to aid in understanding.
Moreover, I also present the actual implementation of the scheduler and explain the
modifications made to the PrioQueue and effect handlers to achieve it.

5.1 Time-based Scheduler

The time-based scheduler is designed to allocate different execution times to fibers
based on their priority levels. When yielded by the scheduler, high-priority fibers are
allocated 400ms, medium-priority fibers are allocated 200ms, and low-priority fibers are
allocated 100ms for execution. This approach enables higher-priority fibers to execute
their operations for a longer period of time before yielding control, enabling them to
complete their execution more quickly than lower-priority fibers.

.

Figure 5.2: Time-based Scheduler

The structure of the PrioQueue and the enqueue and dequeue functions remain the

Chapter 5. Schedulers and Case Studies 25

same as described in Section 3.2, where the scheduler prioritizes selecting fibers with
the highest possible priority levels over the lower-priority fibers. The precise process
of this scheduling mechanism and the PrioQueue structure is illustrated in Figure 5.2.
The modified part inside the scheduler is highlighted in yellow.

As can be observed in Figure 5.2, the modifications required for implementing the time-
based scheduler are narrowed down to the Yield operation and the state structure
attached to the handler, and the PrioQueue remains unchanged. Specifically, a new
state field named startTime, which represents the start time of the fiber’s execution
in milliseconds, needs to be added. Upon yielding control, the startTime of the next
running fiber is updated. Then, execution times are assigned to fibers according to their
priority levels, and the scheduler checks if the fiber has used up its allocated execution
time. If not, the fiber’s execution is resumed; otherwise, control is yielded to the next
fiber. The main code implementing these modifications is provided below.

handle(fiber.f()) (state <- (
prio=fiber.prio,
runQ=runQ,
startTime=clientTimeMilliseconds())

){
...
case <Yield => resume> ->

var currentTime = clientTimeMilliseconds();
var buffer = switch(state.prio){

case High -> 400
case Medium -> 200
case Low -> 100

};
if (currentTime - state.startTime <= buffer) {

resume((), state)
} else{

var q = fiberEnqueue(
resumptionToFiber(resume, state.prio),
state.runQ

);
runNext(poll(q))

}
}

5.2 Step-based Scheduler

Step-based schedulers allocate different numbers of steps for fibers based on their
priority levels, with high-priority fibers receiving 40 steps, medium-priority fibers
receiving 20 steps, and low-priority fibers receiving 10 steps. Each step represents a
segment of a line. Allocating more steps to a fiber allows it to render a longer line
during its execution time.

Chapter 5. Schedulers and Case Studies 26

This scheduler introduces a significant modification to the enqueue and dequeue behav-
ior in the PrioQueue. Instead of prioritizing the dequeuing of higher-priority fibers, it
implements a first-in, first-out (FIFO) policy like a classic queue. As a result, each fiber
gets to run alternately without interruption from higher-priority fibers. The structure of
the PrioQueue and the scheduling mechanisms is illustrated in Figure 5.3.

.

Figure 5.3: Step-based Scheduler

As depicted in Figure 5.3, this scheduler operates in a simpler way as there is no
preemption when a new fiber is created, and the PrioQueue behaves like a standard
queue. Regarding the scheduler aspect, I made modifications to both the Fork and
Yield operations. The implementation for the Fork operation is much simpler, where
the new fibers are directly enqueued into PrioQueue regardless of their priority levels.
For Yield operation, a new state called step is added to keep track of the number of
steps taken by the currently executing fiber. The scheduler yields control only when
the fiber has completed all its allocated steps. The main code implementing these
modifications is provided below.

handle(fiber.f())(state <- (prio=fiber.prio, runQ=runQ, step = 0)){
...
case <Fork(f) => resume> ->

var q = poll(state.runQ);
var qq = fiberEnqueue(fiber0ToFiber(f), q);
resume((), (state with runQ = qq))

case <Yield => resume> ->
var steps = switch(state.prio){

case High -> 40
case Medium -> 20
case Low -> 10

Chapter 5. Schedulers and Case Studies 27

case None -> 0
};
var c = state.step + 1;
if (c < steps) {

resume((), (state with step = c))
} else{

var q = fiberEnqueue(
resumptionToFiber(resume, state.prio),
state.runQ

);
runNext(poll(q))

}
}

5.3 Probability-based Scheduler

Like rolling a dice, the probability-based scheduler selects the next fiber to run by
randomly choosing the priority level and dequeuing the fiber from the corresponding
priority queue. The High Priority Queue has a 50% chance of being chosen, the Medium
Priority Queue has a 30% chance, and the Low Priority Queue has a 20% chance. The
scheduling mechanism is similar to the time-based scheduler discussed in Section 5.1,
with the difference being that each fiber now has the same amount of allocated time
(200ms) during its execution period. This setup ensures that even though each fiber has
the same allocated execution time, higher-priority fibers have a higher chance of being
chosen and finishing their rendering sooner.

.

Figure 5.4: Probability-based Scheduler

Chapter 5. Schedulers and Case Studies 28

The PrioQueue structure remains unchanged in the probability-based scheduler, and
the only modification is made to the dequeue mechanism. Instead of dequeuing the
fibers from the highest nonempty priority queue, this scheduler dequeues fibers from
a particular priority queue determined by random selection based on the specified
probabilities for each priority level. If the selected priority queue is empty, the scheduler
attempts to dequeue fibers from the highest priority queues to the lowest until the entire
PrioQueue is emptied. For example, if the selected priority level is Medium but the
corresponding priority queue is empty, the scheduler will attempt to dequeue fibers from
the High Priority Queue. If that queue is also empty, then the scheduler will attempt to
select the fiber from the Low Priority Queue. The structure of the PrioQueue and the
scheduling mechanism is demonstrated in Figure 5.4.

Figure 5.4 illustrates that the handler function’s state is modified in a manner similar to
the time-based scheduler discussed in Section 5.1. The implementation of the Yield
operation is also similar to the time-based scheduler with a minor change in which
fibers from all priority levels are allotted 200ms for execution. A crucial addition is
the helper function called getNextPrio, which is included in the implementations
of every operation that involves the invocation of runNext. getNextPrio randomly
selects the priority level, which is then passed to runNext as an additional argument.
Inside runNext, the dequeue function of the PrioQueue also uses this specified priority
level as an additional argument to dequeue the fiber from the corresponding priority
queue. The implementation of getNextPrio, runNext and the Yield operation is
shown below:

fun getNextPrio() {
var prob = floatToInt(random() *. 100.0);
if (prob <= 20) {

Low
} else if (prob <= 50) {

Medium
} else {

High
}

}

fun runNext(q, prio){
switch(fiberDequeue(q, prio)){

case (Nothing, _) -> ()
case (Just((fiber, prio)), q) ->

fiber.f(makeSchedulerState(prio, q))
}

}

case <Yield => resume> ->
var currentTime = clientTimeMilliseconds();
if (currentTime - state.startTime <= 200) {

resume((), state)

Chapter 5. Schedulers and Case Studies 29

} else{
var nextPrio = getNextPrio();
var q = fiberEnqueue(

resumptionToFiber(resume, state.prio),
state.runQ

);
runNext(poll(q), nextPrio)

}

In summary, after evaluating the three schedulers, it has been observed that the time-
based scheduler may not be completely fair. This is because this scheduler prioritizes
higher-priority fibers over lower-priority fibers, which may lead to the lower-priority
fibers waiting longer for their execution. Consequently, the execution of lower-priority
fibers may be delayed or even starved, which means that the time-based scheduler does
not provide equal opportunities for all fibers to execute. Therefore, the time-based
scheduler cannot be considered fair based on the fairness definition of concurrency.

5.4 Switch Schedulers

The next step after defining and implementing the three schedulers is to integrate them
into the application and allow users to switch between them. To achieve this, the
schedulers need to be parameterized as variables that can be passed as arguments to
the application. My solution is to define each scheduler as a subroute inside the main
function and pass it as an argument to the page generation function. To facilitate this,
three clickable links are added to the user interface, allowing users to switch between
schedulers by clicking the appropriate link. Upon clicking a link, the browser refreshes
and navigates to the designated subroute for the selected scheduler. The scheduler is
then passed to the page generation function and used to initialize the scheduler. The
modified code to enable this functionality has been provided.

- fun main_page(_){
+ fun main_page(schedule){

- var pId = spawnClient{
Scheduler.schedule(makeFiber(High, start))

};
+ var pId = spawnClient{

schedule(FiberInterface.makeFiber(High, start))
};

page
<html>
...
<body>

+ Scheduler 1
+ Scheduler 2
+ Scheduler 3

</body>

Chapter 5. Schedulers and Case Studies 30

</html>
}

fun main() {
...
- addRoute("/", main_page);
+ addRoute("/", fun(_) {

main_page(Scheduler.schedule)
});
+ addRoute("/scheduler1.links", fun(_) {

main_page(Scheduler1.schedule)
});
+ addRoute("/scheduler2.links", fun(_) {

main_page(Scheduler2.schedule)
});
+ addRoute("/scheduler3.links", fun(_) {

main_page(Scheduler3.schedule)
});
servePages()

}

.

Figure 5.5: Improved user interface with new scheduler switch functionality

This modification greatly simplifies the process of adding or removing schedulers from
the application. The developer only needs to add a subroute in the main function and a
hyperlink on the UI that links to this subroute, which only requires two lines of code.
Users can then switch between schedulers during runtime by clicking the hyperlink.
This approach achieves our objective of making it easy for developers to switch and

Chapter 5. Schedulers and Case Studies 31

integrate different effect handlers with minimal changes to the code. The updated user
interface is presented in Figure 5.5.

5.5 Case Studies Implementation

The objective now is to validate the general applicability of our scheduler switching
approach by building three different applications for case studies that exhibit distinct
rendering behaviors. These case studies are necessary because they ensure that our
scheduler switching approach is not limited to a specific type of application and can
work effectively across various contexts. Once the applications are developed, they
will be evaluated and tested in detail in Chapter 6 to demonstrate the ease and robust-
ness of incorporating different schedulers and ensuring the correct functioning of the
applications.

In general, the application works as follows: when the user clicks a button, the corre-
sponding event listener triggers the buttonPressed function. This function creates the
fiber based on the priority level, and the fiber is enqueued into the external scheduler
queue in runtime.js through JavaScript FFI. The fiber is later dequeued and stored
in the actual PrioQueue when the fiber scheduler yields control. The fiber has two
properties: its priority level and a drawing function responsible for rendering lines on
the canvas. During the fiber’s execution, the rendering function is invoked, which draws
the line slice by slice by calling the drawCustomUnit function in canvas.js through
JavaScript FFI. The scheduler tries to yield control every time a slice of line is rendered.
When the rendering process is complete, the function’s execution finishes, and the fiber
is returned.

This section provides a detailed description and implementation of each case study,
along with figures that visualize the rendering behavior of the application. These figures
use various symbols to help readers understand the behavior of the application, such
as removing the border of the button to indicate a button-pressed action, using arrows
to indicate the rendering direction of lines, using pause signs to indicate the fibers that
are being interrupted and paused, and lines without any signs indicate that a line has
reached the end. Throughout this and the following chapters, the terms fiber and line are
used interchangeably, as each fiber is represented by a line on the canvas. Additionally,
each case study uses the time-based scheduler to maintain consistency in demonstrating
and visualizing rendering behaviors.

5.5.1 Case Study 1

The first case study has a general and intuitive rendering behavior, where each fiber
starts from the left and proceeds toward the right of the canvas. Once the line reaches
the right edge of the canvas, it is considered finished and the fiber returns from the
effect handlers. A visual representation of this behavior is provided in Figure 5.6.
As illustrated, the low-priority fiber is created first and starts rendering. However,
its execution is interrupted when the higher-priority fiber is created and takes control
of the execution. The higher-priority fiber then renders until completion before the
lower-priority fiber resumes rendering until it is also finished.

Chapter 5. Schedulers and Case Studies 32

.

Figure 5.6: Rendering behavior of Case Study 1

The rendering function begins by retrieving the start and end coordinates of the line
to be drawn. When the fiber is executing, the function drawLineInColor is called,
which renders the line with the specified color and then calls the drawHorizontalLine
function. This function first selects the canvas using DOM operation and invokes the
inner function called drawSlice, which is responsible for rendering the line on the
canvas slice by slice using the drawCustomUnit function through JavaScript FFI. The
slices of the line are drawn progressively from left to right, with control being yielded
to other fibers after each slice is rendered. Then, after the resumption of execution,
drawSlice delays the execution of the next slice of the line, allowing the line to
be drawn progressively. This process repeats recursively with the coordinates being
updated at each iteration until the entire line is drawn.

5.5.2 Case Study 2

.

Figure 5.7: Rendering behavior of Case Study 2

The second case study is an extension of the first case study, but with a modification
in the rendering behavior. In this case, after the line is rendered from the left to
the right edge of the canvas, instead of returning the corresponding fiber, the line
reverses its direction and moves back and forth repeatedly. As a result, the fiber never
returns. Figure 5.7 provides a visual representation of this rendering behavior to aid

Chapter 5. Schedulers and Case Studies 33

in understanding. Since the lines are rendered back and forth, the low-priority fiber
is always paused because the high-priority fiber is continuously rendering and never
yields control.

Similarly, the implementation of this rendering behavior is also an extension of the
implementation of Case Study 1, with the primary modification being made to the
drawLineInColor function. Once the initial line is rendered from left to right us-
ing drawHorizontalLine, another additional invocation of drawHorizontalLine is
made, but this time the line is rendered from right to left. After the line is drawn in both
directions, drawLineInColor is recursively called to render the line back and forth
continuously.

5.5.3 Case Study 3

In this case study, I investigate the effects of changing the priority level of fibers during
runtime. Similar to Case Study 2, the line is rendered back and forth repeatedly after
reaching the end. However, the key difference is that when the line is rendered from right
to left, the priority level of the fiber is set to Low. When the line starts rendering from
left to right again, the priority level is reset back to its original level. To illustrate this
behavior clearly, Figure 5.8 has been included. This modification allows us to examine
how changes in priority levels can affect the rendering behavior of the application.

.

Figure 5.8: Rendering behavior of Case Study 3

In the given figure, the high-priority fiber interrupts the execution of the low-priority
fiber when it renders the line from left to right. When the high-priority fiber renders
the line from right to left, both fibers render alternatively as the priority level of the
high-priority fiber has temporarily set to low. To achieve this behavior, in addition to the
implementation of Case Study 2, the var curPrio = FiberInterface.getPrio()
and FiberInterface.setPrio(curPrio) functions are used before and after the
second drawHorizontalLine function respectively.

Chapter 6

Evaluation

6.1 Case Studies

This section evaluates the three schedulers described in Chapter 5 and the scheduler
switch approach presented in Section 5.4 using the case study applications developed in
Section 5.5. In this evaluation, I will create fibers in the following order for each sched-
uler: Low, Medium, High, Medium, High, Low. This ordering is chosen to demonstrate
the interruption and resumption of the lower-priority fibers and validate the effectiveness
of the scheduler switching approach across various applications. Additionally, videos
of each scheduler’s behavior on each case study have been recorded and posted on
YouTube as a playlist [4].

6.1.1 Case Study 1

In the time-based scheduler, the two high-priority lines are rendered first, causing
interruption to all other fibers, including the lower-priority fibers that started rendering
before them. Once the high-priority fibers finish execution, the medium-priority fibers
start executing, followed by the low-priority fibers after the medium-priority fibers
finish execution.

In the step-based scheduler, fibers are executed alternately in the same order as they
were created. Typically, the high-priority fibers finish their execution faster due to the
fact that they have more steps in their execution period. The medium-priority fibers
finish in second place, followed by the low-priority fibers. However, it is possible for
lower-priority fibers to finish rendering faster than higher-priority fibers by creating the
higher-priority fibers much later than the lower-priority fibers since this scheduler has
no interruption.

The probability-based scheduler is less predictable, with higher-priority fibers having
a higher chance of finishing first, but with the possibility of lower-priority fibers
finishing first in some cases. Under certain extreme test cases, such as creating one
low-priority fiber followed by fourteen high-priority fibers, the low-priority fiber has a
high probability of finishing first. This is because, although the High Priority Queue
has an 80% chance of being selected (due to the empty Medium Priority Queue so the

34

Chapter 6. Evaluation 35

scheduler will also dequeue fibers from the High Priority Queue when the medium
priority level is randomly selected), the fourteen high-priority fibers render alternately,
which can slow down their individual rendering process. Meanwhile, the low-priority
fiber is the only fiber in the Low Priority Queue and is thus always dequeued to render
more efficiently when the low-priority level is randomly selected by the scheduler.

6.1.2 Case Study 2

In the time-based scheduler, due to the repetitive rendering of lines back and forth,
only the high-priority lines are able to continue rendering on the canvas while the
lower-priority lines remain paused indefinitely. This is because the higher-priority fibers
never get returned and popped out from the PrioQueue, resulting in the lower-priority
lines being unable to resume rendering.

The step-based scheduler renders fibers alternately and repeatedly back and forth.
However, due to the fact that higher-priority fibers have more steps allocated for their
execution period, they can render faster than lower-priority fibers.

In the probability-based scheduler, all fibers are rendered repeatedly back and forth,
and the probability of a fiber being selected for rendering depends on its priority
level. Therefore, higher-priority fibers have a higher chance of getting selected by the
scheduler, resulting in faster rendering times. However, in certain cases, such as having
one low-priority fiber and fourteen high-priority fibers, the low-priority fiber can render
faster than the high-priority fibers since the probability of selection is distributed among
all the high-priority fibers.

6.1.3 Case Study 3

In the time-based scheduler, the execution of higher-priority fibers interrupts the execu-
tion of lower-priority fibers. As a result, two high-priority fibers reach the end before
the lower-priority fibers. When two high-priority fibers reach the end, they do not
return and are not dequeued from the PrioQueue. Instead, they wait at the end until the
two medium-priority fibers are rendered to the end. Then, all the fibers start executing
because the higher-priority fibers’ priority level is changed to low as they reach the
end. The rendering process for all fibers continues until one of the higher-priority fibers
reaches back to the starting point, where its priority level is set back to its original
level. This will again pause the rendering process of lower-priority fibers including the
higher-priority fibers whose priority level has been temporarily changed to low.

In the step-based scheduler, the behavior is similar to the step-based scheduler in
Case Study 2, but with a key difference. When higher-priority fibers reach the end of
the canvas, their priority level is temporarily changed to low. This results in slower
rendering when the fibers start rendering back.

In the probability-based scheduler, the behavior is similar to the one in Case Study
2, with the only difference being that the higher-priority fibers render slower when
rendering back due to their priority levels being temporarily changed to low, making
it less likely for them to be selected by the scheduler. This feature also affects the

Chapter 6. Evaluation 36

extreme test case where there is one low-priority fiber and fourteen high-priority fibers,
making it less likely for the low-priority fiber to win the race. This is because the
high-priority fibers set their priority levels to low when they reach the end, which makes
the low-priority fiber less likely to be selected by the scheduler and thus rendering much
slower.

6.2 Triumph

This project has successfully implemented the switching of effect handlers, allowing de-
velopers to interpret the same effectful operations with different implementations under
the same application context. Additionally, the project improved the maintainability
and readability of the application code by modularizing different functionalities into
separate modules. Finally, by implementing the change of priority functionalities in the
fiber scheduler, this work highlights the potential for developing the pause and resume
functionalities of fibers during runtime in the future.

Our application, compared with the original racing lines.links example [11], offers a
more user-friendly experience by providing a simple button for users to create a fiber,
along with additional features such as the ability to create medium-priority fibers and
use different schedulers for different behaviors. From an implementation perspective,
our application has significantly reduced the amount of code needed to implement these
features, with only 129 lines of code, including comments, which is only 29% of the
original code length of 444 lines. This modularized codebase enables faster debugging
process by precisely pinpointing errors to specific modules.

6.3 Challenges: Mismatch Between Event Listeners and
Effect Handlers

As this project mainly focuses on Links, minimizing or eliminating the dependency
on JavaScript FFI has been attempted. Despite this effort, the use of canvas.js could
not be avoided due to the lack of support for the Canvas API in Links, making it
dependent on JavaScript. On the other hand, a significant amount of time and effort was
invested in attempting to remove runtime.js from the application. This file contains
functionalities such as managing fibers in the JavaScript runtime before enqueuing them
into PrioQueue, which can, in theory, be replaced by the Links code.

Based on the introduction of runtime.js in Section 4.1 and the interaction between the
external scheduler queue and the PrioQueue illustrated in Figure 4.1, it appears that the
current implementation has resulted in the Fork operation being bypassed altogether.
This goes against the principle of using effect handlers, as every action affecting the
fiber should be carried out using operations. The use of runtime.js as JavaScript
FFI for fiber management is a workaround that negates the use of effectful operations.
Therefore, there is a requirement to address the interpretation of the Fork operation and
eliminate the use of the external scheduler queue in order to comply with the principles
of using effect handlers.

Chapter 6. Evaluation 37

One potential solution to address the bypassing of the Fork operation is to replace all
enqueue functions with Fork operations. However, this approach may not work as
expected since the event listener of the button is not handled as part of the computational
context managed by the scheduler. As a result, this approach leads to compile-time
errors. Thus, a more nuanced solution is needed, which involves handling the event
listener within the context of the scheduler to properly interpret the Fork operation.

An alternative approach to solving the problem of bypassing the Fork operation is to
use the actor model, which was introduced in Section 2.4 and is built into Links. The
actor model replaces the event listener with the message-passing mechanism where each
button clicks event dispatches a message to a receiver that executes the corresponding
function based on the message. A comparison between the same implementation of the
actor model-based receiver and the event listener has been presented below.

// Actor model-based
fun receiver(){

Scheduler.yield();
receive {

case CreateLowLine -> buttonPressed("Low", "red")
case CreateMediumLine -> buttonPressed("Medium", "blue")
case CreateHighLine -> buttonPressed("High", "green")

};
receiver()

}

fun main_page(_){

var pId = spawnClient{
Scheduler.schedule(Scheduler.makeFiber(High, receiver))

};
...

<button l:onclick="{pId ! CreateHighLine}">
Draw High Line

</button>
...

}

// Event listener based
fun main_page(){

var pId = spawnClient{
schedule(FiberInterface.makeFiber(High, start))

};

...
<button l:onclick="{buttonPressed("High", "green")}">

Draw High Line
</button>

Chapter 6. Evaluation 38

...
}

By merging the three event listeners into one receiver function, it facilitates the
handling of this function by the scheduler, which enables the possibility to perform the
Fork operation. This approach eliminates the need to use runtime.js.

The approach described above, although promising, resulted in unexpected issues due
to a false assumption made in the initial design. It was assumed that the receiver
function listens for the message asynchronously, but in reality, the synchronous listening
process of the receiver function in Links blocks the rendering process, which in turn,
blocks the entire scheduler when it is waiting for the message. As a result, if a button is
clicked, the newly created fiber is only able to draw a portion of the line before yielding
to the next fiber. Then, the entire execution is blocked at the receive block after the
resumption until the user clicks the “Draw Line” button again. This behavior makes the
implementation unsuitable for the intended purpose.

fun receiver(){
Scheduler.yield();
// Blocked here until the receiver receives new messages
receive {

case CreateLowLine -> buttonPressed("Low", "red")
case CreateMediumLine -> buttonPressed("Medium", "blue")
case CreateHighLine -> buttonPressed("High", "green")

};
receiver()

}

Although frustrating, this issue exposes the current limitations of wrapping a single
effect handler around all event listeners in Links. In addition, there is a mismatch
between effect handlers, event listeners, and actors, making it difficult to integrate
the receiver function into the cooperative concurrency context of effect handlers.
Therefore, currently, the only option is to use shared state and implement communication
between event listeners and effect handlers through runtime.js using JavaScript FFI.

Chapter 7

Conclusion and Future Work

This project successfully implemented an approach to switch effect handlers with
minimal effort to interpret the same effectful operations under the same application
context. To achieve this, I improved the user experience of the application, expanded the
scheduler to support three different priorities and the changing of priority levels for the
fibers. I then performed the separation of concerns to make the application code more
readable and maintainable, and extracted the effect interface into a separate module.
Next, I implemented three different types of schedulers to serve as the foundation for the
seamless addition, removal, and switching of effect handlers. Additionally, I designed
and implemented three case studies to visualize user-level threads, which were then
used to evaluate the effectiveness of the effect handlers switching mechanism.

While this project successfully achieved the main objective stated in Section 1.2, I was
not fully able to eliminate the use of runtime.js as JavaScript FFI to maintain the
newly created fibers due to the mismatch between effect handlers, event listeners, and
actors in Links. Nevertheless, this work provided valuable contributions to improving
the user experience of defining, plugging in, and switching between different effect
handlers within the same application, allowing the same effectful operations to have
different implementations.

7.1 Future Work

Scrollable Canvas At present, the canvas has a limit of displaying only up to 15 lines.
Although it is still possible for users to create more fibers, the newly created fibers will
not be visible on the canvas due to this limitation. To address this issue and enhance
user experience, it is recommended to implement a scrollable canvas feature that allows
users to view all the created fibers.

Pause and Resume of Fibers Given the successful implementation and presentation
of the GetPrio and SetPrio effectful operations in Section 3.4, it may be possible to
extend the capabilities of our application by implementing the pause and resume of
fibers using these operations. Such an implementation would further demonstrate the
potential of effect handlers in the development of concurrent web applications.

39

Chapter 7. Conclusion and Future Work 40

More Case Study Applications While the existing case study applications effectively
demonstrate the versatility of our effect handler switching mechanism, the evaluation
can be further improved by introducing case studies with completely different behaviors
that deviate from the rendering of lines on the canvas. This will enhance the diversity of
our case studies and provide more concrete and convincing evaluation results.

Benchmark Application The current evaluation of our application only compares
it with the original racing lines.links example. To provide a more comprehensive
evaluation, it would be beneficial to develop a similar application in React or other
popular frameworks used by developers and industries. A comparison between our Link-
based application and the ones developed using these frameworks could be conducted
to demonstrate the effectiveness and uniqueness of our approach.

Bibliography

[1] Carliss Baldwin and Kim Clark. “Design Rules Volume I: The Power of Modular-
ity”, volume 1. 01 2000. doi:10.2307/259400.

[2] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan.
“Attack of the Killer Microseconds”. Commun. ACM, 60(4):48–54, mar 2017.
doi:10.1145/3015146.

[3] Andrej Bauer and Matija Pretnar. “Programming with Algebraic Effects and
Handlers”. CoRR, abs/1203.1539, 2012. URL: http://arxiv.org/abs/1203.
1539, arXiv:1203.1539.

[4] Steven Chang. “Developing Concurrent Web Applications with Effect Handlers in
Links: Case Studies”, Apr. 2023. URL: https://www.youtube.com/playlist?
list=PLjXsWCuXyRhFALyJW0SNvDJBFtVavDcx7.

[5] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. “Links: web pro-
gramming without tiers”. Formal Methods for Components and Objects, 5th
International Symposium, FMCO 2006, Amsterdam, The Netherlands, Novem-
ber 7-10, 2006, Revised Lectures., pages 266–296, 2006. doi:10.1007/
978-3-540-74792-5_12.

[6] Stephen Dolan, Spiros Eliopoulos, Daniel Hillerström, Anil Madhavapeddy, K.C.
Sivaramakrishnan, and Leo White. “Concurrent System Programming with Effect
Handlers”, pages 98–117. Apr. 2018. doi:10.1007/978-3-319-89719-6_6.

[7] dom. “DOM Specification”. URL: https://dom.spec.whatwg.org/.

[8] flexiple. “Introduction to React Fiber”. URL: https://flexiple.com/react/
react-fiber/.

[9] Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. “On the
Expressive Power of User-Defined Effects: Effect Handlers, Monadic Reflection,
Delimited Control”. Proceedings of the ACM on Programming Languages, 1, 10
2016. doi:10.1145/3110257.

[10] Carl Hewitt. “Actor Model of Computation: Scalable Robust Information Sys-
tems”, 2015. arXiv:1008.1459.

[11] Daniel Hillerström. “racing lines.links”. URL: https://github.com/
links-lang/links/blob/master/examples/handlers/racing-lines.
links.

41

https://doi.org/10.2307/259400
https://doi.org/10.1145/3015146
http://arxiv.org/abs/1203.1539
http://arxiv.org/abs/1203.1539
http://arxiv.org/abs/1203.1539
https://www.youtube.com/playlist?list=PLjXsWCuXyRhFALyJW0SNvDJBFtVavDcx7
https://www.youtube.com/playlist?list=PLjXsWCuXyRhFALyJW0SNvDJBFtVavDcx7
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/978-3-319-89719-6_6
https://dom.spec.whatwg.org/
https://flexiple.com/react/react-fiber/
https://flexiple.com/react/react-fiber/
https://doi.org/10.1145/3110257
http://arxiv.org/abs/1008.1459
https://github.com/links-lang/links/blob/master/examples/handlers/racing-lines.links
https://github.com/links-lang/links/blob/master/examples/handlers/racing-lines.links
https://github.com/links-lang/links/blob/master/examples/handlers/racing-lines.links

Bibliography 42

[12] Daniel Hillerström. “Handlers for Algebraic Effects in Links”. Master’s thesis,
Edinburgh, United Kingdom, 2015.

[13] Daniel Hillerström and Sam Lindley. “Liberating Effects with Rows and Handlers”.
In Proceedings of the 1st International Workshop on Type-Driven Development,
TyDe 2016, page 15–27, New York, NY, USA, 2016. Association for Computing
Machinery. doi:10.1145/2976022.2976033.

[14] Daniel Hillerström, Sam Lindley, Robert Atkey, and K. C. Sivaramakrish-
nan. “Continuation Passing Style for Effect Handlers”. 84:18:1–18:19,
2017. URL: http://drops.dagstuhl.de/opus/volltexte/2017/7739, doi:
10.4230/LIPIcs.FSCD.2017.18.

[15] HTML. “HTML Specification”. URL: https://html.spec.whatwg.org/s.

[16] JavaScript. “JavaScript Official Website”. URL: https://www.javascript.
com/.

[17] Karthik Kalyanaraman. “A deep dive into React Fiber”, 14 Mar, 2022. URL:
https://blog.logrocket.com/deep-dive-react-fiber/.

[18] Ohad Kammar, Sam Lindley, and Nicolas Oury. “Handlers in Action”. In-
ternational Conference on Functional Programming, pages 145–158, 2013.
doi:10.1145/2500365.2500590.

[19] Sam Lindley. “Algebraic effects and effect handlers for idioms and arrows”.
WGP 2014 - Proceedings of the 2014 ACM SIGPLAN Workshop on Generic
Programming, 08 2014. doi:10.1145/2633628.2633636.

[20] Links. “Links Documentation”. URL: https://links-lang.org/quick-help.
html.

[21] Links-lang. “JavaScript FFI”. URL: https://github.com/links-lang/
links/wiki/JavaScript-FFI.

[22] Links-lang. “Links Official Website”. URL: https://links-lang.org/.

[23] Links-lang. “Links Wiki”. URL: https://github.com/links-lang/links/
wiki.

[24] Gordon Plotkin and John Power. “Adequacy for Algebraic Effects”. volume 2030,
Jan. 2001. doi:10.1007/3-540-45315-6_1.

[25] Gordon Plotkin and Matija Pretnar. “Handling Algebraic Effects”. Logical
Methods in Computer Science, 9(4), 2013. URL: https://doi.org/10.48550/
arXiv.1312.1399, doi:10.2168/lmcs-9(4:23)2013.

[26] React. “Introducing Concurrent Mode”. URL: https://17.reactjs.org/
docs/concurrent-mode-intro.html.

[27] React. “Introducing Hooks”. URL: https://reactjs.org/docs/
hooks-intro.html.

[28] React. “React Official Website”. URL: https://reactjs.org/.

https://doi.org/10.1145/2976022.2976033
http://drops.dagstuhl.de/opus/volltexte/2017/7739
https://doi.org/10.4230/LIPIcs.FSCD.2017.18
https://doi.org/10.4230/LIPIcs.FSCD.2017.18
https://html.spec.whatwg.org/s
https://www.javascript.com/
https://www.javascript.com/
https://blog.logrocket.com/deep-dive-react-fiber/
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/2633628.2633636
https://links-lang.org/quick-help.html
https://links-lang.org/quick-help.html
https://github.com/links-lang/links/wiki/JavaScript-FFI
https://github.com/links-lang/links/wiki/JavaScript-FFI
https://links-lang.org/
https://github.com/links-lang/links/wiki
https://github.com/links-lang/links/wiki
https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.48550/arXiv.1312.1399
https://doi.org/10.48550/arXiv.1312.1399
https://doi.org/10.2168/lmcs-9(4:23)2013
https://17.reactjs.org/docs/concurrent-mode-intro.html
https://17.reactjs.org/docs/concurrent-mode-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/

Bibliography 43

[29] React. “Virtual DOM and Internals”. URL: https://reactjs.org/docs/
faq-internals.html.

[30] John Resig. “jQuery Official Website”. URL: https://jquery.com/.

[31] Vue. “vue-concurrency Official Website”. URL: https://vue-concurrency.
netlify.app/.

[32] Vue. “Vue Official Website”. URL: https://vuejs.org/.

[33] W3C. “Cascading Style Sheets home page”. URL: https://www.w3.org/
Style/CSS/Overview.en.html.

[34] W3Schools. “JavaScript HTML DOM EventListener”. URL: https://www.
w3schools.com/js/js_htmldom_eventlistener.asp.

https://reactjs.org/docs/faq-internals.html
https://reactjs.org/docs/faq-internals.html
https://jquery.com/
https://vue-concurrency.netlify.app/
https://vue-concurrency.netlify.app/
https://vuejs.org/
https://www.w3.org/Style/CSS/Overview.en.html
https://www.w3.org/Style/CSS/Overview.en.html
https://www.w3schools.com/js/js_htmldom_eventlistener.asp
https://www.w3schools.com/js/js_htmldom_eventlistener.asp

Appendix A

Complete code for racing lines demo

A.1 Case Study 1

import Scheduler;
import Scheduler2;
import Scheduler3;
import LineDrawer;
import FiberInterface;

typename Canvas = ();
typename Point = (x:Int, y:Int);

alien javascript "js/runtime.js" {
delayExecution: (Int) ˜> ();
sysEnqueue: (a) ˜> ();

}

alien javascript "js/canvas.js" {
drawCustomUnit: (Int, Int, Int, Int, String, Canvas) ˜> ();

}

var colors = ["green", "red", "blue", "yellow"];
var allColors = ["red", "green", "blue", "yellow", "#801638", "#027878"];

var priorities = [];

Page Functionality

sig drawHorizontalLine: (Point, Point, String) {Yield:() |e}˜> ()
fun drawHorizontalLine(start, end, color){

var div = getNodeById("box");
var context = jsGetContext2D(div);
var diff = LineDrawer.difference(end, start);

44

Appendix A. Complete code for racing lines demo 45

fun drawSlice(n, start){
drawCustomUnit(start.x, start.y, 1, 25, color, context);
FiberInterface.yield();
delayExecution(5);
if (n > 0) {

drawSlice(
n - 1,
(

x = start.x + (diff.x / LineDrawer.absolute(diff.x)),
y = start.y

)
)

}
}
drawSlice(LineDrawer.absolute(diff.x), start)

}

sig drawLineInColor: (Point, Point, String) {Yield:() |e}˜> ()
fun drawLineInColor(start, end, color){

println("start drawing " ˆˆ color ˆˆ ", yield.");
drawHorizontalLine((x=start.x, y=start.y),

(x=end.x, y=end.y), color);
println("finish drawing " ˆˆ color)

}

sig setUpLineDrawing: (String) ˜> () {Yield:() |e}˜> ()
fun setUpLineDrawing(color){

var points = LineDrawer.getPoints();
switch(points){

case Nothing -> fun(){}
case Just((start, end)) -> {

LineDrawer.updatePoints(start.x,
start.y + 40,
end.x ,
end.y + 40);

fun(){
drawLineInColor(start, end, color)

}
}

}
}

fun start(){
FiberInterface.fork(

FiberInterface.makeFiber(Low, FiberInterface.forever)
);

Appendix A. Complete code for racing lines demo 46

fun aux(colors, prios){
switch((colors, prios)){

case ([],[]) -> ()
case (x::xs, y::ys) -> {

FiberInterface.fork(
FiberInterface.makeFiber(y, setUpLineDrawing(x))

);
aux(xs, ys)

}
case (_, _) -> ()

}
}
aux(colors, priorities)

}

fun buttonPressed(prio, color){
var f = setUpLineDrawing(color);
switch(prio){

case "High" -> sysEnqueue(FiberInterface.makeFiber(High, f))
case "Medium" -> sysEnqueue(FiberInterface.makeFiber(Medium, f))
case "Low" -> sysEnqueue(FiberInterface.makeFiber(Low, f))
case _ -> ()

}
}

Web interface

fun main_page(schedule){

var pId = spawnClient{
schedule(FiberInterface.makeFiber(High, start))

};

page
<html>
<head>

<link
rel="stylesheet"
href="css/racingLines.css"
type="text/css"

/>
</head>
<body>

<canvas
id="box"
width="400"

Appendix A. Complete code for racing lines demo 47

height="600"
class="box center block">

</canvas>
<div class="selection margin-10 center">

<button
class="block button center"
l:onclick="{buttonPressed("Low", "red")}">
Low

</button>
<button

class="block button center"
l:onclick="{buttonPressed("Medium", "blue")}">
Med

</button>
<button

class="block button center"
l:onclick="{buttonPressed("High", "green")}">
High

</button>
</div>
<div class="links">

Time-based Scheduler
Step-based Scheduler
Probability-based Scheduler

</div>
<div id="data" display="none">

<div id="start-x" value="10"></div>
<div id="start-y" value="10"></div>
<div id="end-x" value="390"></div>
<div id="end-y" value="10"></div>

</div>
</body>
</html>

}

sig main: () ˜> ()
fun main() {

addRoute("/", fun(_) {main_page(Scheduler.schedule)});
addStaticRoute("/css", "css", [("css", "text/css")]);
addRoute("/scheduler2.links", fun(_) {

main_page(Scheduler2.schedule)
});
addRoute("/scheduler3.links", fun(_) {

main_page(Scheduler3.schedule)
});
addStaticRoute("/js", "js", [("js", "text/javascript")]);

Appendix A. Complete code for racing lines demo 48

servePages()
}

main()

A.2 Case Study 2

import Scheduler;
import Scheduler2;
import Scheduler3;
import LineDrawer;
import FiberInterface;

typename Canvas = ();
typename Point = (x:Int, y:Int);

alien javascript "js/runtime.js" {
delayExecution: (Int) ˜> ();
sysEnqueue: (a) ˜> ();

}

alien javascript "js/canvas.js" {
drawCustomUnit: (Int, Int, Int, Int, String, Canvas) ˜> ();

}

var colors = ["green", "red", "blue", "yellow"];
var allColors = ["red", "green", "blue", "yellow", "#801638", "#027878"];

var priorities = [];

Page Functionality

sig drawHorizontalLine: (Point, Point, String) {Yield:() |e}˜> ()
fun drawHorizontalLine(start, end, color){

var div = getNodeById("box");
var context = jsGetContext2D(div);
var diff = LineDrawer.difference(end, start);
fun drawSlice(n, start){

drawCustomUnit(start.x, start.y, 1, 25, color, context);
FiberInterface.yield();
delayExecution(5);
if (n > 0) {

drawSlice(
n - 1,
(

Appendix A. Complete code for racing lines demo 49

x = start.x + (diff.x / LineDrawer.absolute(diff.x)),
y = start.y

)
)

}
}
drawSlice(LineDrawer.absolute(diff.x), start)

}

sig drawLineInColor: (Point, Point, String) {Yield:() |e}˜> ()
fun drawLineInColor(start, end, color){

println("start drawing " ˆˆ color ˆˆ ", yield.");
drawHorizontalLine((x=start.x, y=start.y), (x=end.x, y=end.y), color);
print("reached top, draw back");
drawHorizontalLine(

(x=end.x, y=end.y),
(x=start.x, y=start.y),
"white"

);
println("finish drawing " ˆˆ color);
drawLineInColor(start, end, color)

}

sig setUpLineDrawing: (String) ˜> () {Yield:() |e}˜> ()
fun setUpLineDrawing(color){

var points = LineDrawer.getPoints();
switch(points){

case Nothing -> fun(){}
case Just((start, end)) -> {

LineDrawer.updatePoints(start.x,
start.y + 40,
end.x ,
end.y + 40);

fun(){
drawLineInColor(start, end, color)

}
}

}
}

fun start(){
FiberInterface.fork(

FiberInterface.makeFiber(Low, FiberInterface.forever)
);
fun aux(colors, prios){

switch((colors, prios)){

Appendix A. Complete code for racing lines demo 50

case ([],[]) -> ()
case (x::xs, y::ys) -> {

FiberInterface.fork(
FiberInterface.makeFiber(y, setUpLineDrawing(x))

);
aux(xs, ys)

}
case (_, _) -> ()

}
}
aux(colors, priorities)

}

fun buttonPressed(prio, color){
var f = setUpLineDrawing(color);
switch(prio){

case "High" -> sysEnqueue(FiberInterface.makeFiber(High, f))
case "Medium" -> sysEnqueue(FiberInterface.makeFiber(Medium, f))
case "Low" -> sysEnqueue(FiberInterface.makeFiber(Low, f))
case _ -> ()

}
}

Web interface

fun main_page(schedule){

var pId = spawnClient{
schedule(FiberInterface.makeFiber(High, start))

};

page
<html>
<head>

<link
rel="stylesheet"
href="css/racingLines.css"
type="text/css"

/>
</head>
<body>

<canvas
id="box"
width="400"
height="600"
class="box center block">

Appendix A. Complete code for racing lines demo 51

</canvas>
<div class="selection margin-10 center">

<button
class="block button center"
l:onclick="{buttonPressed("Low", "red")}">
Low

</button>
<button

class="block button center"
l:onclick="{buttonPressed("Medium", "blue")}">
Med

</button>
<button

class="block button center"
l:onclick="{buttonPressed("High", "green")}">
High

</button>
</div>
<div class="links">

Time-based Scheduler
Step-based Scheduler
Probability-based Scheduler

</div>
<div id="data" display="none">

<div id="start-x" value="10"></div>
<div id="start-y" value="10"></div>
<div id="end-x" value="390"></div>
<div id="end-y" value="10"></div>

</div>
</body>
</html>

}

sig main: () ˜> ()
fun main() {

addRoute("/", fun(_) {main_page(Scheduler.schedule)});
addStaticRoute("/css", "css", [("css", "text/css")]);
addRoute("/scheduler2.links", fun(_) {

main_page(Scheduler2.schedule)
});
addRoute("/scheduler3.links", fun(_) {

main_page(Scheduler3.schedule)
});
addStaticRoute("/js", "js", [("js", "text/javascript")]);

servePages()

Appendix A. Complete code for racing lines demo 52

}

main()

A.3 Case Study 3

import Scheduler;
import Scheduler2;
import Scheduler3;
import LineDrawer;
import FiberInterface;

typename Canvas = ();
typename Point = (x:Int, y:Int);

alien javascript "js/runtime.js" {
delayExecution: (Int) ˜> ();
sysEnqueue: (a) ˜> ();

}

alien javascript "js/canvas.js" {
drawCustomUnit: (Int, Int, Int, Int, String, Canvas) ˜> ();

}

var colors = ["green", "red", "blue", "yellow"];
var allColors = ["red", "green", "blue", "yellow", "#801638", "#027878"];

var priorities = [];

Page Functionality

sig drawHorizontalLine: (Point, Point, String) {Yield:() |e}˜> ()
fun drawHorizontalLine(start, end, color){

var div = getNodeById("box");
var context = jsGetContext2D(div);
var diff = LineDrawer.difference(end, start);
fun drawSlice(n, start){

drawCustomUnit(start.x, start.y, 1, 25, color, context);
FiberInterface.yield();
delayExecution(5);
if (n > 0) {

drawSlice(
n - 1,
(

x = start.x + (diff.x / LineDrawer.absolute(diff.x)),
y = start.y

Appendix A. Complete code for racing lines demo 53

)
)

}
}
drawSlice(LineDrawer.absolute(diff.x), start)

}

sig drawLineInColor: (Point, Point, String) {Yield:() |%}˜> ()
fun drawLineInColor(start, end, color){

println("start drawing " ˆˆ color ˆˆ ", yield.");
drawHorizontalLine((x=start.x, y=start.y), (x=end.x, y=end.y), color);
print("reached top, draw back");
var curPrio = FiberInterface.getPrio();
FiberInterface.setPrio(Low);
drawHorizontalLine(

(x=end.x, y=end.y),
(x=start.x, y=start.y),
"white"

);
FiberInterface.setPrio(curPrio);
drawLineInColor(start, end, color)

}

sig setUpLineDrawing: (String) ˜> () {Yield:() |%}˜> ()
fun setUpLineDrawing(color){

var points = LineDrawer.getPoints();
switch(points){

case Nothing -> fun(){}
case Just((start, end)) -> {

LineDrawer.updatePoints(
start.x,
start.y + 40,
end.x,
end.y + 40

);
fun(){

drawLineInColor(start, end, color)
}

}
}

}

fun start(){
FiberInterface.fork(

FiberInterface.makeFiber(Low, FiberInterface.forever)
);

Appendix A. Complete code for racing lines demo 54

fun aux(colors, prios){
switch((colors, prios)){

case ([],[]) -> ()
case (x::xs, y::ys) -> {

FiberInterface.fork(
FiberInterface.makeFiber(y, setUpLineDrawing(x))

);
aux(xs, ys)

}
case (_, _) -> ()

}
}
aux(colors, priorities)

}

fun buttonPressed(prio, color){
var f = setUpLineDrawing(color);
switch(prio){

case "High" -> sysEnqueue(FiberInterface.makeFiber(High, f))
case "Medium" -> sysEnqueue(FiberInterface.makeFiber(Medium, f))
case "Low" -> sysEnqueue(FiberInterface.makeFiber(Low, f))
case _ -> ()

}
}

Web interface

fun main_page(schedule){

var pId = spawnClient{
schedule(FiberInterface.makeFiber(High, start))

};

page
<html>
<head>

<link
rel="stylesheet"
href="css/racingLines.css"
type="text/css"

/>
</head>
<body>

<canvas
id="box"
width="400"

Appendix A. Complete code for racing lines demo 55

height="600"
class="box center block">

</canvas>
<div class="selection margin-10 center">

<button
class="block button center"
l:onclick="{buttonPressed("Low", "red")}">
Low

</button>
<button

class="block button center"
l:onclick="{buttonPressed("Medium", "blue")}">
Med

</button>
<button

class="block button center"
l:onclick="{buttonPressed("High", "green")}">
High

</button>
</div>
<div class="links">

Time-based Scheduler
Step-based Scheduler
Probability-based Scheduler

</div>
<div id="data" display="none">

<div id="start-x" value="10"></div>
<div id="start-y" value="10"></div>
<div id="end-x" value="390"></div>
<div id="end-y" value="10"></div>

</div>
</body>
</html>

}

sig main: () ˜> ()
fun main() {

addRoute("/", fun(_) {main_page(Scheduler.schedule)});
addStaticRoute("/css", "css", [("css", "text/css")]);
addRoute("/scheduler2.links", fun(_) {

main_page(Scheduler2.schedule)
});
addRoute("/scheduler3.links", fun(_) {

main_page(Scheduler3.schedule)
});
addStaticRoute("/js", "js", [("js", "text/javascript")]);

Appendix A. Complete code for racing lines demo 56

servePages()
}

main()

A.4 fiberInterface.links

typename Priority = [|High|Medium|Low|None|];
typename Fiber0(e::Eff) = (prio: Priority,

f: () {Fork: (Fiber0({ |e})) => () |e}˜> ());

sig fork : (Fiber0({ |e})) {Fork: (Fiber0({ |e})) => ()|e}˜> ()
fun fork(f){

do Fork(f)
}

sig yield: () {Yield:() |e}˜> ()
fun yield(){

do Yield
}

sig getPrio: () {GetPrio: () => Priority |e}˜> Priority
fun getPrio(){

do GetPrio
}

sig setPrio: (Priority) {SetPrio: (Priority) => () |e}˜> ()
fun setPrio(p){

do SetPrio(p)
}

sig makeFiber: (
Priority,
() {Fork: (Fiber0({ |e})) => () |e}˜> ()

) -> Fiber0({ |e})
fun makeFiber(prio, f){

(prio= prio, f=f)
}

sig forever: () {Yield:() |e}˜> ()
fun forever(){ yield(); forever()}

Appendix A. Complete code for racing lines demo 57

A.5 lineDrawer.links

typename Point = (x:Int, y:Int);

sig difference: (Point, Point) -> Point
fun difference(a, b){

(x = a.x - b.x, y= a.y - b.y)
}

sig absolute: (Int) -> Int
fun absolute(n){

if(n < 0){
n * -1

} else{
n

}
}

sig parseInt: (String) ˜> Maybe(Int)
fun parseInt(n){

if (n =˜ /ˆ[0-9]+$/) {
Just(stringToInt(n))

} else{
Nothing

}
}

fun updatePoints(startx, starty, endx, endy){
setValue(startx, "start-x", intToString);
setValue(starty, "start-y", intToString);
setValue(endx, "end-x", intToString);
setValue(endy, "end-y", intToString)

}

sig getPoints: () ˜> Maybe((Point, Point))
fun getPoints(){

var startx = parseInt(getValue("start-x"));
var starty = parseInt(getValue("start-y"));
var endx = parseInt(getValue("end-x"));
var endy = parseInt(getValue("end-y"));
switch((startx, starty, endx, endy)){

case (Just(sx),
Just(sy),
Just(ex),
Just(ey)) -> Just((x = sx, y = sy), (x = ex, y = ey))

case (_, _, _, _) -> Nothing

Appendix A. Complete code for racing lines demo 58

}
}

A.6 runtime.js

function delayExecution(delay, kappa){
window.setTimeout(

function(){
return _$K.yield(kappa, _$Constants.UNIT);

},
delay

);
return _$Constants.UNIT;

}

const SystemQueue = (function(){

let queue = _$List.nil;

function enqueue(fiber){
queue = _$List.cons(fiber, queue);
return _$Constants.UNIT;

}

function dequeue(){
let temp = queue;
queue = _$List.nil;
return temp;

}

function length(){
return _$List.length(queue);

}

return { "enqueue": enqueue
, "dequeue": dequeue
, "length" : length }

}());

const sysEnqueue = _$Links.kify(SystemQueue.enqueue);
const sysDequeue = _$Links.kify(SystemQueue.dequeue);
const sysQueueLength = _$Links.kify(SystemQueue.length);

Appendix A. Complete code for racing lines demo 59

A.7 Time-based Scheduler

open import FiberInterface;
open import Queue;

alien javascript "js/runtime.js" {
sysDequeue: () ˜> [a];

}

typename PrioQueue(a) = (
high: Queue(a),
medium: Queue(a),
low: Queue(a),
none: Queue(a)

);

typename SchedulerState(a) = (
runQ: PrioQueue(a),
prio: Priority,
startTime: Int

);

typename Fiber(e::Eff) = (prio:Priority,
f: (SchedulerState(Fiber({ |e}))) ˜e˜> ());

typename FiberQueue(e::Eff) = PrioQueue(Fiber({ |e}));

sig priorityEnqueue: (a, Priority, PrioQueue(a)) ˜> PrioQueue(a)
fun priorityEnqueue(x, prio, pq){

switch(prio){
case High -> (pq with high = enqueue(x, pq.high))
case Medium -> (pq with medium = enqueue(x, pq.medium))
case Low -> (pq with low = enqueue(x, pq.low))
case None -> (pq with none = enqueue(x, pq.none))

}
}

sig priorityDequeue: (PrioQueue(a)) ˜> (Maybe((a, Priority)), PrioQueue(a))
fun priorityDequeue(pq){

switch(dequeue(pq.high)){
case (Just(x), q) -> (Just((x, High)), (pq with high= q))
case (Nothing,_) ->

switch(dequeue(pq.medium)){
case (Just(x), q) -> (

Just((x, Medium)),
(pq with medium= q)

)

Appendix A. Complete code for racing lines demo 60

case (Nothing,_) ->
switch(dequeue(pq.low)){

case (Just(x), q) -> (
Just((x, Low)),
(pq with low=q)

)
case (Nothing, _) ->

switch(dequeue(pq.none)){
case (Just(x), q) -> (

Just((x, None)),
(pq with none=q)

)
case (Nothing, _) -> (Nothing, pq)

}
}

}
}

}

sig fiberEnqueue: (Fiber({ |e}), FiberQueue({ |e})) ˜> FiberQueue({ |e})
fun fiberEnqueue(f, q){

priorityEnqueue(f, f.prio, q)
}

sig fiberBulkEnqueue: ([Fiber({ |e})],
FiberQueue({ |e})) ˜> FiberQueue({ |e})

fun fiberBulkEnqueue(fibers, q){
switch(fibers){

case [] -> q
case x::xs ->

var pq = fiberEnqueue(x, q);
fiberBulkEnqueue(xs, pq)

}
}

sig fiberDequeue: (FiberQueue({ |e})) ˜> (
Maybe((Fiber({ |e}), Priority)),
FiberQueue({ |e})

)
fun fiberDequeue(q){

priorityDequeue(q)
}

fun emptyPrioQueue(){
(high= emptyQueue(),
medium=emptyQueue(),

Appendix A. Complete code for racing lines demo 61

low=emptyQueue(),
none=emptyQueue())

}

sig fiberQueueLength: (FiberQueue({ |e})) -> Int
fun fiberQueueLength(q){

length(q.low.rear) +
length(q.high.front) +
length(q.high.rear) +
length(q.medium.front) +
length(q.medium.rear) +
length(q.low.front)

}

#sig schedule: (Fiber0({ |e})) {Yield-, Fork- | e}˜> ()
fun schedule(fib){

sig makeSchedulerState: (Priority, PrioQueue(a)) ˜> SchedulerState(a)
fun makeSchedulerState(prio, q){

(runQ = q, prio = prio, startTime = clientTimeMilliseconds())
}

fun runNext(q){
switch(fiberDequeue(q)){

case (Nothing, _) -> ()
case (Just((fiber, prio)), q) -> {

fiber.f(makeSchedulerState(prio, q))
}

}
}

fun resumptionToFiber(resume, prio){
(prio = prio, f = fun(state) { resume((), state) })

}

fun newPrioToFiber(resume, prio){
(prio = prio,
f = fun(state) {

resume((), (state with prio = prio))
})

}

mutual {
sig fiber0ToFiber: (Fiber0({ |%e})) ˜%˜> Fiber({ |%e})
fun fiber0ToFiber(fiber){

(prio = fiber.prio,

Appendix A. Complete code for racing lines demo 62

f = fun(state) { runFiber(fiber, state.runQ) })
}

#sig poll: (FiberQueue({ |e})) ˜> FiberQueue({ |e})
fun poll(q){

var enqueue = map(fiber0ToFiber, sysDequeue());
fiberBulkEnqueue(enqueue, q)

}

fun runFiber(fiber, runQ){
println("runQ: " ˆˆ intToString(fiberQueueLength(runQ)));
#dump(self());
handle(fiber.f()) (state <- (

prio=fiber.prio,
runQ=runQ,
startTime=clientTimeMilliseconds())

){
case x ->

print("RETURN");
runNext(poll(state.runQ))

case <GetPrio => resume> -> resume(state.prio, state)
case <SetPrio(p) => resume> ->

var q = fiberEnqueue(newPrioToFiber(resume, p),
state.runQ);

runNext(poll(q))
case <Fork(f) => resume> ->

print("fork");
var q = poll(state.runQ);
f is new fiber, state.prio is the current fiber
switch ((f.prio, state.prio)) {
case (High, _) ->

Enqueue the current fiber, run the new fiber
print("High fiber enqueued");
var qq = fiberEnqueue(

resumptionToFiber(resume, state.prio),
q

);
runFiber(f, qq)

case (Medium, High) ->
print("Medium high fiber enqueued");
Enqueue the new fiber, run the current fiber
var qq = fiberEnqueue(fiber0ToFiber(f), q);
resume((), (state with runQ = qq))

case (Medium, _) ->
print("Medium fiber enqueued");
Enqueue the new fiber, run the current fiber

Appendix A. Complete code for racing lines demo 63

var qq = fiberEnqueue(
resumptionToFiber(resume, state.prio),
q

);
runFiber(f, qq)

case (_, High) ->
Enqueue the new fiber, run the current fiber
print("Low High fiber enqueued");
var qq = fiberEnqueue(fiber0ToFiber(f), q);
resume((), (state with runQ = qq))

case (_, Medium) ->
Enqueue the new fiber, run the current fiber
print("Low Medium fiber enqueued");
var qq = fiberEnqueue(fiber0ToFiber(f), q);
resume((), (state with runQ = qq))

case (_,_) ->
Enqueue the current fiber, run the new fiber
print("Low fiber enqueued");
var qq = fiberEnqueue(

resumptionToFiber(resume, state.prio),
q

);
runFiber(f, qq)

}
case <Yield => resume> ->

var currentTime = clientTimeMilliseconds();
var buffer = switch(state.prio){

case High -> 400
case Medium -> 200
case Low -> 100
case None -> 0

};
if (currentTime - state.startTime <= buffer) {

resume((), state)
} else{

var q = fiberEnqueue(
resumptionToFiber(resume, state.prio),
state.runQ

);
runNext(poll(q))

}
}

}
}

runFiber(fib, emptyPrioQueue())

Appendix A. Complete code for racing lines demo 64

}

A.8 Step-based Scheduler

open import FiberInterface;
open import Queue;

alien javascript "js/runtime.js" {
sysDequeue: () ˜> [a];

}

typename PrioQueue(a) = (queue: Queue(a));
typename SchedulerState(a) = (

runQ: PrioQueue(a),
prio: Priority,
step: Int

);

typename Fiber(e::Eff) = (
prio:Priority,
f: (SchedulerState(Fiber({ |e}))) ˜e˜> ()

);

typename FiberQueue(e::Eff) = PrioQueue(Fiber({ |e}));

sig fiberEnqueue: (Fiber({ |e}), FiberQueue({ |e})) ˜> FiberQueue({ |e})
fun fiberEnqueue(f, pq){

(pq with queue = enqueue(f, pq.queue))
}

sig fiberBulkEnqueue: ([Fiber({ |e})],
FiberQueue({ |e})) ˜> FiberQueue({ |e})

fun fiberBulkEnqueue(fibers, q){
switch(fibers){

case [] -> q
case x::xs ->

var pq = fiberEnqueue(x, q);
fiberBulkEnqueue(xs, pq)

}
}

sig fiberDequeue: (FiberQueue({ |e})) ˜> (
Maybe((Fiber({ |e}), Priority)), FiberQueue({ |e})

)
fun fiberDequeue(pq){

Appendix A. Complete code for racing lines demo 65

switch(dequeue(pq.queue)){
case (Nothing, _) -> (Nothing, pq)
case (Just(x), q) -> (Just((x, x.prio)), (pq with queue=q))

}
}

fun emptyPrioQueue(){
(queue=emptyQueue())

}

sig fiberQueueLength: (FiberQueue({ |e})) -> Int
fun fiberQueueLength(q){

length(q.queue.rear) + length(q.queue.front)
}

#sig schedule: (Fiber0({ |e})) {Yield-, Fork- | e}˜> ()
fun schedule(fib){

sig makeSchedulerState: (Priority, PrioQueue(a)) ˜> SchedulerState(a)
fun makeSchedulerState(prio, q){

(runQ = q, prio = prio, step = 0)
}

fun runNext(q){
switch(fiberDequeue(q)){

case (Nothing, _) -> ()
case (Just((fiber, prio)), q) -> fiber.f(

makeSchedulerState(prio, q)
)

}
}

fun resumptionToFiber(resume, prio){
(prio = prio, f = fun(state) { resume((), state) })

}

fun newPrioToFiber(resume, prio){
(prio = prio,
f = fun(state) { resume((), (state with prio = prio)) })

}

mutual {
sig fiber0ToFiber: (Fiber0({ |%e})) ˜%˜> Fiber({ |%e})
fun fiber0ToFiber(fiber){

(prio = fiber.prio,
f = fun(state) { runFiber(fiber, state.runQ) })

Appendix A. Complete code for racing lines demo 66

}

fun poll(q){
var enqueue = map(fiber0ToFiber, sysDequeue());
fiberBulkEnqueue(enqueue, q)

}

fun runFiber(fiber, runQ){
println("runQ: " ˆˆ intToString(fiberQueueLength(runQ)));
#dump(self());
handle(fiber.f()) (state <- (

prio=fiber.prio,
runQ=runQ,
step = 0)

){
case x ->

runNext(poll(state.runQ))
case <GetPrio => resume> -> resume(state.prio, state)
case <SetPrio(p) => resume> ->

var q = fiberEnqueue(
newPrioToFiber(resume, p),
state.runQ

);
runNext(poll(q))

case <Fork(f) => resume> ->
var q = poll(state.runQ);
f is new fiber, state.prio is the current fiber
var qq = fiberEnqueue(fiber0ToFiber(f), q);
resume((), (state with runQ = qq))

case <Yield => resume> ->
var steps = switch(state.prio){

case High -> 40
case Medium -> 20
case Low -> 10
case None -> 0

};
var c = state.step + 1;

if (c < steps) {
resume((), (state with step = c))

} else{
var q = fiberEnqueue(

resumptionToFiber(resume, state.prio),
state.runQ

);
runNext(poll(q))

Appendix A. Complete code for racing lines demo 67

}
}

}
}

runFiber(fib, emptyPrioQueue())

}

A.9 Probability-based Scheduler

open import FiberInterface;
open import Queue;

alien javascript "js/runtime.js" {
sysDequeue: () ˜> [a];

}

typename PrioQueue(a) = (
high: Queue(a),
medium: Queue(a),
low: Queue(a),
none: Queue(a)

);

typename SchedulerState(a) = (
runQ: PrioQueue(a),
prio: Priority,
startTime: Int

);

typename Fiber(e::Eff) = (
prio:Priority,
f: (SchedulerState(Fiber({ |e}))) ˜e˜> ()

)
;
typename FiberQueue(e::Eff) = PrioQueue(Fiber({ |e}));

var bufferTime = 200;

sig priorityEnqueue: (a, Priority, PrioQueue(a)) ˜> PrioQueue(a)
fun priorityEnqueue(x, prio, pq){

switch(prio){
case High -> (pq with high = enqueue(x, pq.high))
case Medium -> (pq with medium = enqueue(x, pq.medium))
case Low -> (pq with low = enqueue(x, pq.low))

Appendix A. Complete code for racing lines demo 68

case None -> (pq with none = enqueue(x, pq.none))
}

}

sig priorityDequeue: (PrioQueue(a), Priority) ˜> (
Maybe((a, Priority)),
PrioQueue(a)

)
fun priorityDequeue(pq, prio){

switch(prio) {
case High -> switch(dequeue(pq.high)) {

case (Just(x), q) -> (
Just((x, High)),
(pq with high= q)

)
case (Nothing,_) ->

switch(dequeue(pq.medium)){
case (Just(x), q) -> (

Just((x, Medium)),
(pq with medium= q)

)
case (Nothing,_) ->

switch(dequeue(pq.low)){
case (Just(x), q) -> (

Just((x, Low)),
(pq with low=q)

)
case (Nothing, _) -> (

Nothing,
pq

)
}

}
}

case Medium -> switch(dequeue(pq.medium)) {
case (Just(x), q) -> (

Just((x, Medium)),
(pq with medium= q)

)
case (Nothing,_) ->

switch(dequeue(pq.high)){
case (Just(x), q) -> (

Just((x, High)),
(pq with high= q)

)
case (Nothing,_) ->

Appendix A. Complete code for racing lines demo 69

switch(dequeue(pq.low)){
case (Just(x), q) -> (

Just((x, Low)),
(pq with low=q

)
case (Nothing, _) -> (

Nothing,
pq

)
}

}
}

case Low -> switch(dequeue(pq.low)) {
case (Just(x), q) -> (

Just((x, Low)),
(pq with low= q)

)
case (Nothing,_) ->

switch(dequeue(pq.high)){
case (Just(x), q) -> (

Just((x, High)),
(pq with high= q)

)
case (Nothing,_) ->

switch(dequeue(pq.medium)){
case (Just(x), q) -> (

Just((x, Medium)),
(pq with medium=q)

)
case (Nothing, _) -> (

Nothing,
pq

)
}

}
}

case None -> switch(dequeue(pq.none)){
case (Just(x), q) -> (

Just((x, None)),
(pq with none=q)

)
case (Nothing, _) -> (Nothing, pq)

}
}

}

Appendix A. Complete code for racing lines demo 70

sig fiberEnqueue: (Fiber({ |e}),
FiberQueue({ |e})) ˜> FiberQueue({ |e})

fun fiberEnqueue(f, q){
priorityEnqueue(f, f.prio, q)

}

sig fiberBulkEnqueue: ([Fiber({ |e})],
FiberQueue({ |e})) ˜> FiberQueue({ |e})

fun fiberBulkEnqueue(fibers, q){
switch(fibers){

case [] -> q
case x::xs ->

var pq = fiberEnqueue(x, q);
fiberBulkEnqueue(xs, pq)

}
}

sig fiberDequeue: (FiberQueue({ |e}), Priority) ˜> (
Maybe((Fiber({ |e}), Priority)),
FiberQueue({ |e})

)
fun fiberDequeue(q, prio){

priorityDequeue(q, prio)
}

fun emptyPrioQueue(){
(high= emptyQueue(),
medium=emptyQueue(),
low=emptyQueue(),
none=emptyQueue())

}

sig fiberQueueLength: (FiberQueue({ |e})) -> Int
fun fiberQueueLength(q){

length(q.low.rear) +
length(q.high.front) +
length(q.high.rear) +
length(q.medium.front) +
length(q.medium.rear) +
length(q.low.front)

}

#sig schedule: (Fiber0({ |e})) {Yield-, Fork- | e}˜> ()
fun schedule(fib){

sig makeSchedulerState: (Priority, PrioQueue(a)) ˜> SchedulerState(a)

Appendix A. Complete code for racing lines demo 71

fun makeSchedulerState(prio, q){
(runQ = q, prio = prio, startTime = clientTimeMilliseconds())

}

fun runNext(q, prio){
switch(fiberDequeue(q, prio)){

case (Nothing, _) -> ()
case (Just((fiber, prio)), q) -> fiber.f(

makeSchedulerState(prio, q)
)

}
}

fun resumptionToFiber(resume, prio){
(prio = prio, f = fun(state) { resume((), state) })

}

fun newPrioToFiber(resume, prio){
(

prio = prio,
f = fun(state) { resume((), (state with prio = prio))}

)
}

fun getNextPrio() {
var prob = floatToInt(random() *. 100.0);

if (prob <= 20) {
Low

} else if (prob <= 50) {
Medium

} else {
High

}
}

mutual {
sig fiber0ToFiber: (Fiber0({ |%e})) ˜%˜> Fiber({ |%e})
fun fiber0ToFiber(fiber){

(prio = fiber.prio,
f = fun(state) { runFiber(fiber, state.runQ) })

}

fun poll(q){
var enqueue = map(fiber0ToFiber, sysDequeue());
fiberBulkEnqueue(enqueue, q)

Appendix A. Complete code for racing lines demo 72

}

fun runFiber(fiber, runQ){
println("runQ: " ˆˆ intToString(fiberQueueLength(runQ)));
#dump(self());
handle(fiber.f()) (state <- (

prio=fiber.prio,
runQ=runQ,
startTime=clientTimeMilliseconds())

){
case x ->

print("RETURN");
var nextPrio = getNextPrio();
runNext(poll(state.runQ), nextPrio)

case <GetPrio => resume> -> resume(state.prio, state)
case <SetPrio(p) => resume> ->

var q = fiberEnqueue(
newPrioToFiber(resume, p),
state.runQ

);
var nextPrio = getNextPrio();
runNext(poll(q), nextPrio)

case <Fork(f) => resume> ->
print("fork");
var q = poll(state.runQ);
f is new fiber, state.prio is the current fiber
switch ((f.prio, state.prio)) {
case (High, _) ->

Enqueue the current fiber, run the new fiber
print("High fiber enqueued");
var qq = fiberEnqueue(

resumptionToFiber(resume, state.prio),
q

);
runFiber(f, qq)

case (Medium, High) ->
print("Medium high fiber enqueued");
Enqueue the new fiber, run the current fiber
var qq = fiberEnqueue(

fiber0ToFiber(f),
q

);
resume((), (state with runQ = qq))

case (Medium, _) ->
print("Medium fiber enqueued");
Enqueue the new fiber, run the current fiber

Appendix A. Complete code for racing lines demo 73

var qq = fiberEnqueue(
resumptionToFiber(resume, state.prio),
q

);
runFiber(f, qq)

case (_, High) ->
Enqueue the new fiber, run the current fiber
print("Low High fiber enqueued");
var qq = fiberEnqueue(

fiber0ToFiber(f),
q

);
resume((), (state with runQ = qq))

case (_, Medium) ->
Enqueue the new fiber, run the current fiber
print("Low Medium fiber enqueued");
var qq = fiberEnqueue(fiber0ToFiber(f), q);
resume((), (state with runQ = qq))

case (_,_) ->
Enqueue the current fiber, run the new fiber
print("Low fiber enqueued");
var qq = fiberEnqueue(

resumptionToFiber(resume, state.prio),
q

);
runFiber(f, qq)

}
case <Yield => resume> ->

var currentTime = clientTimeMilliseconds();
if (currentTime - state.startTime <= bufferTime) {

resume((), state)
} else{

var nextPrio = getNextPrio();
var q = fiberEnqueue(

resumptionToFiber(resume, state.prio),
state.runQ

);
runNext(poll(q), nextPrio)

}
}

}
}

runFiber(fib, emptyPrioQueue())

}

	Introduction
	Motivations
	Objectives
	Contributions
	Report Structure

	Background
	Modern Web Development
	Links
	XML and DOM
	Event Listeners
	Foreign Function Interface

	Effect Handlers
	Programming with Effect Handlers in Links
	Code Example in Links

	Concurrent Programming with Effect Handlers
	Related work
	React and React Fiber
	racing_lines.links

	Base Application
	Overview
	Three Priority Level
	User Interface Implementation
	Editing Priority of the Fiber

	Modularization
	JavaScript FFIs
	Separation of Concerns
	Extract Effect Interface

	Schedulers and Case Studies
	Time-based Scheduler
	Step-based Scheduler
	Probability-based Scheduler
	Switch Schedulers
	Case Studies Implementation
	Case Study 1
	Case Study 2
	Case Study 3

	Evaluation
	Case Studies
	Case Study 1
	Case Study 2
	Case Study 3

	Triumph
	Challenges: Mismatch Between Event Listeners and Effect Handlers

	Conclusion and Future Work
	Future Work

	Bibliography
	Complete code for racing lines demo
	Case Study 1
	Case Study 2
	Case Study 3
	fiberInterface.links
	lineDrawer.links
	runtime.js
	Time-based Scheduler
	Step-based Scheduler
	Probability-based Scheduler

