
University of Edinburgh
School of Informatics

Web Menace: A Links Demonstration of a
Classic Learning Machine

4th Year Project Report
Computer Science

Samuel Corbett

April 3, 2009

Abstract: The Matchbox Educable Noughts-and-Crosses Engine, a 1959
invention of Biologist and Computer Scientist Donald Michie, was one of the
earliest examples of reinforcement learning. Capable of incrementally learning
to play noughts-and-crosses with a combination of matchboxes, beads and re-
inforcements, Menace was by no means a miracle of artificial intelligence but
was instead a proof of concept designed to educate Michie’s AI-sceptic contem-
poraries. The task of this project was to create Web-Menace: an appealing
and interactive Links-based demonstration of Michie’s original construction. In
this report I describe how users may play Menace, create and train their own
machines, and then explore the contents of its matchboxes. I then test Menace’s
performance in different scenarios and suggest and test potential improvements
to the model.

Acknowledgements

Ian Stark for his suggestions, criticisms and encouragement, Sam Lindley for his
technical assistance and Kylie Hill for being thoroughly great.

Contents

1 Introduction 1

2 Background 3
2.1 Menace . 3

2.1.1 The Menace Machine . 3
2.1.2 More formally . 5
2.1.3 Related Work . 6

2.2 Links . 6
2.2.1 Concurrency . 9
2.2.2 Database interaction . 10

3 Creating Web-MENACE 13
3.1 A Brief Overview . 13
3.2 Program Setup . 15

3.2.1 The User Interface . 15
3.2.2 Storing Data . 16

3.3 Playing a Game . 17
3.3.1 Computer Opponents . 18
3.3.2 The Manager . 19
3.3.3 Menace’s Turns . 19
3.3.4 The End Game . 20

3.4 Creating Other Menaces . 21
3.4.1 Training a machine . 23

4 Exploring MENACE 25
4.1 An Overview . 25
4.2 Charts . 25
4.3 Current and historical preferences 28

4.3.1 Current preferences . 28
4.3.2 Historical preferences . 28
4.3.3 User Interface . 29

4.4 Individual machine statistics . 31

5 Observations and Statistics 33
5.1 Testing Menace . 33

5.1.1 Michie’s Menace . 34
5.1.2 Adjusting Menace . 37
5.1.3 In Summary . 39

5.2 Working with Links . 39

v

6 Conclusions 41

Bibliography 43

1. Introduction

The Matchbox Educable Noughts and Crosses Engine, Menace for short, was
the 1959 invention of Donald Michie. Created to prove incorrect a colleague’s as-
sertion that machines could never ‘learn’, Menace used a combination of match-
boxes, beads and reinforcements to play games of noughts-and-crosses, over time
attaining a good standard of play. One of the earliest examples of a machine
able to learn, it directly preceded the development of Boxes, the first working
demonstration of reinforcement learning by computer. [15, 18]

This project’s task was to create Web-Menace: an interactive demonstration
of Menace using the Links programming language. Links is a strongly typed,
strict, functional web-based language under development at the University of
Edinburgh, designed to eliminate the ‘impedance mismatch’ problem by providing
a single language for the three tiers of web development (web-browser, web-server
and database) [9]. Secondary goals of the project included the creation of user-
customised Menaces and the exploration of Menace’s digital matchboxes, both
past and present.

To achieve the primary task I have written a program that allows a user to
play against a Menace machine himself, or observe it playing one of of a set
of predefined opponents that range in difficulty from extremely simple to quite
tricky. As the user plays repeated games against Menace he will see it adapt to
his strategies, eventually becoming a well-rounded player.

I provide a facility for users to create, customise and train their own Menace
machines. Customisation is achieved by altering the reward scheme it uses and
changing each matchbox’s initial provision of beads. ‘Training’ a machine entails
it quickly playing many games against computer opponents, to raise it to a more
advanced level than in its initial state. Both the number of games and the
machine’s opponents can be user-specified.

The ‘exploration’ of Menace, described in Chapter 4, allows a user to step
through a game Menace might face and observe both its current preferences and
how they have been previously altered at each stage. The complete program is
publicly available at http://groups.inf.ed.ac.uk/links/examples/menace/index.
links.

In this report I first describe the historical background to Menace and give a
brief introduction to the features of Links. I then detail my implementation of
Web-Menace, noting implementation details and design choices in the process.
In Chapter 5 I test Menace’s performance against various opponents and suggest
how it could be adjusted to increase its efficacy.

1

http://groups.inf.ed.ac.uk/links/examples/menace/index.links
http://groups.inf.ed.ac.uk/links/examples/menace/index.links

2 1. INTRODUCTION

2. Background

In this chapter I give the historical background to Menace, describing its con-
ception and original design and defining it in terms of a Markov Decision Process.
I then give an introduction to Links, detailing its notable features and explaining
how it differs from the most widely used web-programming languages.

2.1 Menace

During World War II Donald Michie worked at Bletchley Park, notably aiding
efforts to solve the ‘Tunny’ cipher by improving the Colossus computer. While
there he befriended Alan Turing (being one of few of Turing’s ability at chess [20])
and the pair, along with Jack Good, formed a discussion group around Turing’s
‘child machine’ concept, in which Turing proposed constructing an intelligent
machine by first building a general learning program and then training it as you
would a child. By the end of the war Michie’s interest in machine intelligence
had been captured – he later commented:

I resolved that I should spend my life on the pursuit of machine in-
telligence as soon as such an enterprise became feasible. [18]

The wait took fifteen years, during which Michie worked as a geneticist, creating
chess-playing paper machines in his spare time. In 1959 Michie was challenged
by a colleague that machines able to learn were, in principle, impossible. Since
digital computers were still scarce his response was the construction of Menace,
a contraption of beads and matchboxes that could learn to play noughts-and-
crosses. It won the bet with his colleague and an invitation from the US Office
of Naval Research to visit Stanford.

At Stanford Michie adapted Menace to create a general trial-and-error learner
that became known as Boxes. It was the first ever working demonstration of
reinforcement learning by machine and preceded the explosion of British inter-
est in artificial intelligence that was only tempered by the 1973 publication of
the Lighthill report and the subsequent cut in government funding for artificial
intelligence research. [13, 18]

2.1.1 The Menace Machine

The operation of Menace is simple: A matchbox for each of the 287 distinct
boards the machine might face (rotations and reflections taken into account – see

3

4 2. BACKGROUND

Figure 2.1: Symmetry and reflection reduce the number of boards Menace must
consider. Here the red Xs indicate potential moves and grey Xs indicate their
ignorable symmetries.

Figure 2.2: The Original Menace Machine [15]. Used with permission.

Figure 2.1 for an example) contains a number of differently coloured beads corre-
sponding to the unoccupied squares that might be played on that board. When
it is Menace’s turn to play the human operator takes the board’s corresponding
box, gives it a shake and tilts it forward, making the beads fall into a V-shaped
fence attached. The machine plays in the square corresponding to the colour of
bead at the V’s apex.

At the end of the game reinforcements are applied. If the machine has won, three
beads of the appropriate colour are added to each of the matchboxes used. If it
has drawn, one bead is added, and if it has lost it is ‘punished’ by removing the
bead used. As the machine plays many games it will come to favour those moves
that lead to winning positions. [15]

In Michie’s first tournament with Menace it abandoned all openings but the
corner after seventeen games. By the twentieth game the machine was consis-

2.1. MENACE 5

tently drawing so Michie began using ‘unsound variations’ of strategies to win,
a useful tactic until it learnt to deal with these too. After the 220th game the
machine had beaten Michie eight times in ten games so Michie retired from the
tournament. [12]

2.1.2 More formally

Formally, the game of noughts-and-crosses can be thought of as a finite Markov
decision process (MDP). These are “the specification of a sequential decision
problem for a fully observable environment with a Markovian transition model
and additive rewards” [17]. Deconstructed term-by-term and related to noughts-
and-crosses this means:

• That there are only a limited number of possible games;

• That the quality of a player is determined by the decisions it makes during
a game;

• That a player will always be able to know the current state of the board
(and all states that might follow);

• The probability of transitioning from one state to another is only dependent
upon the current state – the moves played before reaching this board are
irrelevant.

• The ‘utility’ of a particular move is the sum of rewards received. In Men-
ace’s case this is simply the number of beads in the move’s matchbox.

MDPs are defined by four components, given in terms of their definition for one
player of a game of noughts-and-crosses:

• The state space, S: All boards the player could face.

• An action space, A: In this case actions are ‘move in square x’, where
x ∈ {1..9}.

• A transition model, Pa(s, s′) = P (s′|s, a): The probability of moving to
state s′ given that the model is in state s and the player performs action a.
The model should reflect how the opponent plays.

• A reward function: Player specific. In Menace’s case applied at the end of
a game – +3 beads in a matchbox for a win, +1 bead for a draw, -1 beads
for a loss.

Menace can be thought of as providing a policy for this MDP, adjusted so that
rewards are only distributed at the end of an iteration rather than after each step.

6 2. BACKGROUND

A policy π(s) denotes the action recommended by π in state s and in Menace’s
case represents shaking a matchbox and selecting the bead at the apex of the V.

The stochastic element of the opposing player means that each game will lead
to a different state history, so policies are measured in terms of the expected
utility of the state history. An optimal policy is one that maximises this utility.
Menace clearly does not fit this criteria when new, since it is effectively a random
player. Whether the reinforcements to its matchboxes (adapting the policy) bring
it closer to this maximum depend on the difficulty of the opponent it is playing:
too easy and Menace will settle for a solution that is ‘good enough’, too difficult
and Menace might never find a useful policy.

2.1.3 Related Work

Relatively few implementations of Menace exist, at least publicly on the in-
ternet. Two implementations worthy of note are ‘Menace in C++’ [21] and a
version written in Visual Basic [19]. Both are interested in Menace as something
of a programming exercise, with the bonus of an engaging history. This project is
apparently unique in its attempt to make Menace visually understandable and
explorable.

2.2 Links

As the Internet has matured and the number of people ‘connected’ has exploded
there have been a glut of new technologies for web-programming and a sizeable
increase in the number of people trying their hand. A novice is lured in by the
promise of a simple Wordpress blog install [7] and is soon battling with PHP,
HTML, cascading stylesheets (CSS) and probably Asynchronous Javascript and
XML (Ajax) techniques too, in this new ‘Web 2.0’ age.

Similarly, professional developers are expected to be able to combine ‘traditional’
static content with personalised services that update in real-time, recommend
items of interest based on user habits and combine interactive Flash based services
like video and music streaming, all while making sure the service is scalable and
doesn’t overload the server.

The troubles encountered when attempting to link so many disparate technolo-
gies has been phrased as the ‘impedance mismatch’ problem [4] – it is difficult,
especially in large systems, to ensure that each tier of a web-service receives the
data it expects. For example, responding to an Ajax request to display infor-
mation contained in a database in a client’s browser could easily require three
different formats for the data: the database → a format suitable for the server

2.2. LINKS 7

language, the server language→ Json, for the Ajax library, and Json→ Xml,
to display in the browser. It is the programmer’s responsibility to manage these
requirements.

Links is a language designed to ease this problem by providing a single point
of call for all tiers of a project. A program written in Links is translated into
three components – Javascript, to run on the client, Links, to run on the server,
and SQL, for communication with a database. Programs may move seamlessly
between the three tiers as they execute.

In contrast with many languages used for web-programming, for example PHP
and Ruby, Links is functional, has a strong-typing system and is strict. The
type-safe abstractions such languages allow provide the grounds for Links to
introduce some powerful and novel concepts to the field of web-programming,
notably ‘Formlets’ and abstractions over query fragments, both features described
below.

The following is a brief overview of the features of Links.

The client/server relationship One of the fundamental features of Links is
its capability to transparently pass execution of a program between the client
and the server. Functions can be annotated with client or server tags that
guarantee the function will be be run on that tier (if the tag is omitted the
function will be compiled for both).

Client-server calls are made as asynchronous XMLHTTPRequests and server-client
calls are responses containing the result of the function call and a representation of
the server’s state, to be applied the next time the server is called. It is important
to note that when a program is executing on the client the server maintains no
state – it is in this sense that Links programs are scalable, since when the server
is idle it consumes no resources [9].

Databases The third ‘tier’ of a Links application is the database. Run from
the server, queries are executed with a list comprehension construct. Connecting
to a database, formatting queries as SQL and managing results are all handled
by Links transparently from the programmer. The use of databases is described
in more detail later in this chapter.

XML Links includes XML as a native datatype and provides a set of primi-
tives that, given an element of the active document and some XML, make the
appropriate change to the underlying structure of the document. These functions
include things like appendChildren, replaceNode and removeNode, and can only

8 2. BACKGROUND

be run from the client. Nodes in a document can be referenced with the function
getNodeById.

For example, to append an item telling of Menace’s latest win to a list defined
in a document as:

<ul id="result-list">

One can simply write:

appendChildren(

Menace wins!,

getNodeById("result-list")

)

If the XML has no enclosing element (the li tags in the example above) an XML
‘forest’ can be used instead, denoted by the tags <#></#>.

XML and Links code can be recursively nested within each other, allowing a
degree of ‘templating’ – a generic structure can be created that inserts the results
of various function calls to customise the appearance of the page.

Interactivity Links allows event handlers to be attached to page elements.
These have the form:

l:onxxx="{ function }"

And are fired whenever xxx occurs. Examples include click, mouseover and
submit (useful for altering the default action of a form). They are active as
long as the element they are attached to remains in the Document Object Model
(Dom, a language and platform independent model for representing XML and
HTML documents).

Though they may be the start of any particular computation, handlers are most
often used as the start of a chain of function calls to specifically respond to an
action by the user, with visual feedback provided with an update to the Dom.

Handling events In the scope of each event handler is a special variable called
event, accessible by special functions corresponding to the Yahoo! Web UI library
[8]. These functions allow things like getTarget, returning the DomNode where
the event occurred, and getPageX, returning the x coordinate of the event, relative
to the top-left corner of the page.

Formlets Links introduces the concept of ‘Formlets’ for meaningful abstraction
of forms. They allow the HTML representation of a form to be separated from

2.2. LINKS 9

the supplied data’s internal representation and may be combined and reused to
create larger forms without losing any semantic meaning. They are an interesting
concept but have not been used in this project. [10, 11]

The creation of Menace has involved particular use of concurrency and databases,
two aspects of Links I now explain in more detail.

2.2.1 Concurrency

Links makes forking a program into many threads of control particularly easy. A
new process is spawned with the simple:

var pid = spawn { function(..) };

This will run function in a new process until it terminates (if ever). Processes
have ‘mailboxes’ and can be sent messages with:

pid ! Message

Messages arrive in a first in, first out order, and are received either by calling
recv() or, more usefully, by switching over the possibilities. For example, a
process waiting for a human to make a move in a game of noughts-and-crosses
might:

receive {

case MovedSquare(index: Int) -> { .. }

case Quit -> { .. }

}

This mailbox has the variant type [| MovedSquare:Int | Quit |] – if it is sent
any other kind of message the program will simply not compile. The unknown
case can be handled with the wildcard.

Links masks the fact that Javascript makes no provision for concurrent programs
by inserting explicit context switches between processes, and eliminates the call
stack in between these switches since it will only contain tail calls to which
execution will never return [9].

Concurrency is of particular use when handling user interaction – one can spawn a
process that waits for certain events, display a page with event handlers attached
to the appropriate elements and have these handlers send the process messages
when they fire, the process handling the event asynchronously to any other actions
occurring on the page.

10 2. BACKGROUND

2.2.2 Database interaction

A major component of Links is its provision for database operations. Links
supports MySQL, PostgreSQL and SQLite and permits a reduced subset of SQL
expressions – the select, insert, update and delete operations. Connections
to a database are parameterised by the specification of a username, password,
server and port and they can be accessed with table-handles, which define the
table name and its type, in the form of a record. For example, a table that tracks
the results of a Menace machine’s games could be defined as:

table "games"

with (machine_id: Int, game_num: Int,

opponent: Int, result: Char)

from (database "web_menace")

Retrieving data from a database occurs through list comprehensions that must
be executing on the server. To get a list of all the opponents a Menace machine
has beaten using the table above one might:

for (game <-- games)

where (game.machine_id == some_id && game.result == ‘W’)

[(opponent = game.opponent, game = game.game_num)]

}

The long arrow <-- indicates the right hand side of the argument is a table and
guarantees that the comprehension will execute as a single SQL query. In this
case the query is likely to be equivalent to:

SELECT opponent, game_num

FROM games

WHERE games.machine_id == some_id

AND games.result == ‘W’

Queries must return a record of ‘base’ types (Bool, Int, Char, Float, Xml or
Database).

The reduced subset of SQL supported by Links means that a query like:

length(for (x <-- table) where condition)

Cannot be translated into:

SELECT count(*) FROM table WHERE condition

Instead one must pull all items matching condition into a list in Links and run
length on that.

2.2. LINKS 11

As of version 0.5 Links supports higher-order queries – a query may be described
according to an abstract condition that Links will not know until runtime, but
Links guarantees at compile time that the query will execute as a single SQL
statement. For example, to match a condition in the table games, one can write:

fun matching_games(condition) {

for (game <-- games) where (condition(game))

[records]

}

The condition could be a single function, it could be many complex conditions
combined dynamically according to some user-defined input; if it compiles Links
guarantees a single SQL query. It does this by “analysing the program to ensure
that callers [..] never pass a function that Links cannot translate to SQL in the
context of the query.” [5] Such functions are generally those that are recursive,
use ‘wild’ primitives (basic functions provided by Links that are known to be
untranslatable to SQL), or that do not return a list of records with fields of base
type.

12 2. BACKGROUND

3. Creating Web-MENACE

The aim of this project was to create Web-Menace: an appealing, interactive
demonstration of Donald Michie’s original Menace that runs in a web-browser
and is written in Links. To that extent I have constructed a system that allows a
user to play Menace himself, or have Menace play one of a number of prede-
fined opponents. By playing many games the user can observe Menace learning
to counter and combat the alternate strategies thrown its way.

Further goals of the project included the creation of arbitrary machines, a fa-
cility to explore Menace’s innards and an implementation of Martin Gardner’s
Hexapawn [12], a simplified matchbox-learner that is perhaps easier to under-
stand because of its smaller scope. Of these three goals I completed the first pair,
eventually running out of time to create a worthy version of Hexapawn.

In this chapter I describe my implementation of the basic Menace machine,
initially giving a high-level overview of its specification, before describing its
implementation in Links. The creation of user-defined machines is described
at the end of this chapter and encompasses alternate reward schemes, different
initial provision of beads and ‘training’ machines by having them automatically
play many games against other opponents.

The ‘exploration’ of Menace’s matchboxes is described in the next chapter. It
includes the presentation of their current state and the visualisation of how the
number of beads inside has been altered over the many games it plays.

I use a few items of terminology throughout this and later sections of this report:

• Menace is Donald Michie’s original construction.

• Web-Menace is the project being described.

• A machine is any computer-player.

• Menace has a number of standard opponents it can play and be trained
against. They are described in Section 3.3.1.

• A Menace machine’s state refers to its collection of matchboxes and the
beads contained within.

3.1 A Brief Overview

There are five distinct sections to Web-Menace – playing a game, creating new
machines, exploring Menace, viewing general machine stats (like games won,

13

14 3. CREATING WEB-MENACE

(a) The introductory Web-Menace page shows a brief introduction to Menace and gives the
user the choice of several opponents to play against Dennis.

(b) Dennis outwits Beryl. The winning line is highlighted in red and the progress of the game is
shown step-by-step on the right.

Figure 3.1: The interface for playing games.

3.2. PROGRAM SETUP 15

drawn and lost rather than beads in matchboxes) and an ‘about’ section describ-
ing the history and operation of Menace.

Pictured in Figures 3.1(a) and 3.1(b) are screenshots of the first of these. Figure
3.1(a) is an introductory screen, giving a brief overview of Menace and promi-
nently displaying an option to play the ‘standard’ Menace (nicknamed Dennis),
a machine that follows Michie’s original design, against either the user or one of
the standard opponents.

Choosing one of the opponents immediately starts a game and replaces this in-
troductory page with a large board to contain the current state of the game and
a section that will be filled with smaller boards indicating each separate move
as the game progresses. If the user chose one of the standard opponents to play
Menace then the game progresses independent of his actions. If however he
chose to play Menace himself, he takes his moves by clicking the square of the
large board in which he wishes to play. Figure 3.1(b) is an example of how this
all appears at the end of a game.

3.2 Program Setup

Though Web-Menace is treated by the browser as a single page and runs under
a single URL it was developed as several individual pages that were merged at
the end of development. The advantage of merging comes when moving between
sections that were otherwise independent – the new ‘page’ loads instantly rather
than incurring a thirty-second delay as Links parses and type checks the file, and
so forth. To achieve this, each item in the menu at the top of the page has an
onclick handler attached that swaps the page’s current content with that of the
new section.

Links provides a very basic mechanism for code reuse by allowing the combination
of include statements in a program with a preprocessor script, run before Links
starts it work, that literally replaces the include statement with the contents of
the requested file. Though a little ungainly this method allows a certain amount
of refactoring and is undeniably better than there being no mechanism at all. It
was used to share common constructs like type definitions between files and to
keep logically distinct sections of the program apart.

3.2.1 The User Interface

Pictured in Figures 3.1(a) and 3.1(b) are the introductory Web-Menace screen
and the end of an example game. General details were already mentioned in
Section 3.1, here I give a few implementation details.

16 3. CREATING WEB-MENACE

The introductory screen Is mostly static HTML. Hovering the mouse over
one of the opponents’ names fires an event handler to display a short line indi-
cating the number of games the machine has played and how many of them were
won, lost and drawn. Clicking a name fires another event handler to begin a
game of noughts-and-crosses between Dennis and the chosen opponent.

The Game Upon choosing an opponent the game is launched and the intro-
ductory page is replaced to show the game in action. On the left is a large board
to show the current state of play, and on the right is a step-by-step list of the
moves taken in the game, each latest move highlighted in red.

If the user chose one of the standard opponents to play Menace, the large
board is simply plain HTML. When the user plays Menace himself, though,
event handlers are attached to each square with actions for the onmouseover,
onmouseout and onclick events. The mouseover and mouseout handlers simply
display and hide the user’s game character to give a clear indication of where the
game thinks he is about to play if he clicks. Doing so sends a message containing
the integer index of the square to the ‘manager’, described in Section 3.3.2.

3.2.2 Storing Data

Web-Menace stores all information in a database. The following is an overview
of the tables it contains.

Machines Tracks the attributes of each computer player. These include its
name, its type, whether it was human created or is one of the standard machines
and the number of games it has played, won and drawn (with the number lost
inferred).

Game history A record of every game a machine plays is kept, listing the
opponent and the result.

Rewards When a user creates his own Menace machine (see Section 3.4), he
has the option of supplying an alternate reward scheme. They are stored in this
table and default to Donald Michie’s original scheme of three for a win, one for
a draw and less one for a loss.

3.3. PLAYING A GAME 17

Figure 3.2: An example board

Initial bead provisions A second element of customisation afforded the user
is to alter the number of beads provided for each potential move of a previously
unencountered board. Values default to the scheme used by Michie, which follows
the formula bF/2c, where F indicates the number of unplayed squares on the
board. For example, each move in Figure 3.2 would be given 2 beads.

Boards Each board Menace encounters is stored with a unique identifier to
avoid duplicating data in other tables. They are represented as a nine-character
string with underscores to represent blank squares. For example, the board in
Figure 3.2 would be represented as ‘X OXXO ’.

Matchboxes Each Menace machine represents its current ‘state’ (as described
above) as many records in this table. A single record is appropriate to a single
machine and represents the number of beads associated with a free square of a
particular board. It is referenced whenever Menace plays a move and when first
initialised is set to the according value in the ‘initial bead provisions’ table.

Matchbox histories Complementing the table of current machine states is a
second table to record every transition a matchbox passes through, combined
with the result of each game in which it was used. From this one can read ‘in
the nth game that Menace A encountered board B it played in square C. The
result was D and afterwards the matchbox contained E beads.’

3.3 Playing a Game

Playing a game is a matter of choosing an opponent for Menace and then either
taking turns as need be or watching its computer opponent play.

Web-Menace defines a number of types to represent a game of noughts-and-
crosses. A Square is an (index, filling character) tuple and a Board is a list
of squares. Boards are defined in this manner, rather than simply as a list of
characters, so that reflections and rotations are easily reversible when translating
information from the database back to the context of the game.

18 3. CREATING WEB-MENACE

Players (human and computer alike) are represented by the PlayerInfo type,
effectively a container for the machine’s information as stored in the database.
The two competitors in a game are given type GamePlayerInfo, which holds the
PlayerInfo information, an abbreviation to use for displaying status updates
mid-game (the shortest non-identical subsequence of characters between the two
machine’s names) and information needed by Menace to perform its reinforce-
ments at the end of the game, wrapped in a Maybe type so that non-Menaces
can ignore it.

3.3.1 Computer Opponents

Web-Menace provides four ‘standard’ opponents that are useful for training new
machines and for observing how Menace copes against different styles of play.
They can all run on either the client or the server.

A second Menace (Beryl) An alternate version of Menace that plays ac-
cording to Michie’s original design, but as second player rather than first. When
both machines are new and are repeatedly played against each other Beryl has a
far harder time learning to playing well.

Heuristics (Danny) The ‘heuristics’ machine plays according to the following
rules, given in order of preference:

1. Make a winning move;

2. Block the opponent from winning;

3. Play in the center square;

4. Play in the first available corner square (left-to-right, top-to-bottom);

5. Play in the first available remaining square.

Note that this machine is deterministic and is trivially beatable (see Figure 5.2(a)
on page 36).

Menace finds Danny a tough opponent, especially when ‘fresh’ and effectively
plays randomly, when Danny tends to pummel Menace into submission, Men-
ace only learning because it loses so many games that only a handful of squares
in boards met early in play contain any beads.

Random (Gnasher) and First Available Square (Billy) The least inter-
esting pair of opponents play exactly as their names suggest. Gnasher is useful

3.3. PLAYING A GAME 19

for a few initial rounds of training when creating a machine; it allows Men-
ace to explore possible moves and hopefully find some useful strategies without
penalising it too heavily for simple mistakes.

Billy is useful for showing Menace’s limitations – it often wins after Menace has
played many games against ‘better’ opponents. That said, Menace is generally
quick to learn how beat it.

3.3.2 The Manager

Games are controlled by a ‘manager’, running in a separate process created at
the start of any series of games between two opponents and receiving triggers
from the user interface. When spawned it is provided with two variables of type
GamePlayerInfo, indicating the participants in the game. Each turn it acts as
follows:

1. Decide whose turn it is to play;

2. Have this player make a move:

• If the player is human wait for a HumanClick message;

• Otherwise switch on the player’s type and call the appropriate func-
tion. Menace’s turns are described in more detail below.

3. Display the move;

4. Work out the new game state – one of GameWon, GameDrawn or GameInProgress.

• If the game has finished, display an appropriate status message, high-
light any winning lines in red and perform the end-game database
updates described in Section 3.3.4.

• Otherwise repeat this whole process.

I initially used three processes to control a game – one for the manager and one
for each player, but eventually decided the program was simply clearer if the
manager acted on behalf of the two players.

3.3.3 Menace’s Turns

Described only briefly above, a typical Menace move is rather more involved
than a standard opponent or human move. It proceeds as follows:

1. If there is only one square remaining simply play there and ignore the
following steps;

20 3. CREATING WEB-MENACE

2. Get the board’s ID from the database, rotating and reflecting as necessary.
If the board has not been encountered before (so isn’t in the database) add
it and set default bead values, accounting for any symmetries the board
may contain;

3. Get the machine’s bead values for this board ID;

4. Choose a square with probability proportional to the number of beads it
contains and the number of beads contained by all free squares;

5. Play in the square and make a note of the board id/square combination for
end-game updates.

To calculate playable squares Web-Menace first looks for any symmetries in a
board by checking the four variants (a)–(d) shown in Figure 3.3. If one of the
patterns is matched the symmetric squares are removed from consideration and
the playable squares are then any remaining empty squares. If all patterns are
matched the board is fully symmetric and only three squares need be considered,
as shown in (e).

To decide its move in step 4, Menace generates a random number between 1
and the number of beads in the matchbox, then repeatedly subtracts the number
of beads kept for each square from this value until the result is zero or less. The
square that took Menace over the threshold is the one that is played. If a
matchbox contains no beads then Menace simply plays randomly, an important
distinction from Michie’s design which instead would have been understood as
Menace resigning from play.

For a long time during the development of Web-Menace, this procedure used
random numbers between 0 and the number of beads in the matchbox - 1. When
there were no beads in the matchbox this created a random number between 0
and 0 – 0 – and the first square examined took Menace to the threshold! By
this simple oversight if a matchbox was empty Menace would simpy play in the
first available square. Its effect is mentioned in Section 5.1.1.

3.3.4 The End Game

At the end of the game a number of database updates are made. Menace updates
the matchboxes (or database rows) it used according to its reward scheme and
it adds each new square/bead-count combination to its table tracking matchbox
histories. A record is added to the table of game histories indicating who played
who and which player won, and the table of machines is updated to reflect the
two participant’s new played, won and drawn values.

3.4. CREATING OTHER MENACES 21

(a) Diagonal 1 (b) Diagonal 2 (c) Horizontal

(d) Vertical (e) Total

Figure 3.3: The four kinds of symmetry encounterable in a game of noughts-and-
crosses and a fifth special case. Menace uses these symmetries to reduce the
number of possible moves it must consider. Example code to decide (a) is given
in Figure 3.4.

3.4 Creating Other Menaces

If a user does not want to play Dennis, the default Menace, he can create his
own machine. The only restriction is that its name is unique. To allow an element
of customisation and the examination of Menace’s performance under differing
circumstances, alternate reward schemes may be supplied and the default number
of beads provided for each move may be altered.

Changing the initial number of beads Menace assigns to each possible move
on a board effectively alters the number of chances it is allowed to take with
the move. Make it high and Menace can explore a lot and is less likely to
be punished for experimenting when playing a decent opponent, make it low
and Menace becomes far more conservative, quickly ignoring moves that have
previously led it to a loss.

Rewards may be anything between -128 and 127 beads (though such extreme
values only really make sense if the default number of beads in a matchbox is
also made a lot larger) and there is no restriction that a win must have a positive
reward and a loss a negative reward, so a machine that attempts to lose could
also be created. Rewards are specified for each move of the game.

22 3. CREATING WEB-MENACE

typename Square = (Int, Char);

typename Board = [Square];

True if all square pairings are equal

sig symm : (Board, [(Int, Int)]) ∼> Bool

fun symm(board, indices) {

all(fun ((x,y)) {

sq_equal(select(board, x), select(board, y))

}, indices)

}

sig sq_equal : (Square, Square) ∼> Bool

fun sq_equal(s1, s2) {

second(s1) == second(s2)

}

Symmetry through top-left/bottom-right diagonal line

sig tlbr_symmetric : (Board) ∼> Bool

fun tlbr_symmetric(board) {

symm(board, [(1, 3), (2, 6), (5, 7)])

}

Figure 3.4: Function tlbr symmetric returns true if the board is symmetric as
shown in Figure 3.3(a). Checking for other symmetries proceeds in a similar
manner.

3.4. CREATING OTHER MENACES 23

The create-a-machine page also allows the user to play any other machine, or
play any two machines against themselves.

3.4.1 Training a machine

New machines may be ‘trained’ by playing many games against other computer
opponents chosen by the user. The games are all played on the server and feed-
back about the machine’s performance is provided every twenty games with a
list of wins, draws and losses, and a chart graphing this information (in the form
described in Section 4.4). Any number of games may take place against any com-
bination of opponents – the choice is the user’s. Ten games takes roughly four
and a half seconds.

This feature is especially useful for quickly examining Menace’s performance
given different customisations and was used heavily for the tests in Chapter 5.

Figure 3.5 shows the interface for training a Menace machine. Opponents to
play are displayed in a list monitored by a process tracking the ids of the elements
containing opponent information, so that information can be collated when the
user has finished. Clicking the ‘Add another’ button sends a message to this
process, adding and tracking another list item. The ‘Remove’ link sends the
manager a message containing the ID of the list item to delete from the Dom
and remove from those being tracked.

Figure 3.5: The interface for training a Menace machine.

24 3. CREATING WEB-MENACE

4. Exploring MENACE

This chapter describes how a user of Web-Menace may explore a Menace ma-
chine’s matchboxes and come to an understanding of how such a simple creation
learns to play noughts-and-crosses.

I have focused on two aspects of Menace – representing the current state of its
matchboxes and giving an illustration of how they have been adjusted through
the many games it plays. They are combined on screen to view simultaneously
as a user steps through the game.

Also provided is a tool for viewing individual machine statistics. These include
the number of games a machine has played, won, lost and drawn, a graph of its
progress and its ‘favourite’ and most ‘disliked’ opponents, judged as the opponents
against which it has had the largest number of wins and defeats respectively.

4.1 An Overview

To explore Menace’s matchboxes the user is presented with a screen as pictured
in Figure 4.1. Its premise is to allow a user to step through a game of noughts-
and-crosses between either Menace and a human or two Menaces, at each move
presenting the squares Menace may decide between for its move and providing
an easily interpretable guide to how likely the machine is to choose between each
one, as well as how these likelihoods have changed though many games.

Clicking one of the possibilities is treated as Menace moving in that square and
loads information for the next stage of the game. Stepping through to the end
of a game presents the user with information on how Menace would have been
rewarded had it really played the match.

The charts shown are created with the Google Chart API, a handy service whose
use I now describe.

4.2 Charts

A lot of the information tracked by Web-Menace is excellent for displaying as a
chart – for instance, in such a format it is easy to see when a machine has played
well, or has started storing many beads in a particular matchbox. However, since
Links is a very young language there are few options for tasks that stretch beyond

25

26 4. EXPLORING MENACE

Figure 4.1: The interface for exploring Menace’s matchboxes.

4.2. CHARTS 27

Figure 4.2: The y-axis implies there are approximately 0.8 beads in this matchbox
– there are in fact zero.

its current reaches. To create charts I instead used the Google Chart API [3],
a service that dynamically creates PNG-encoded images given data encoded in
a URL. The choice of an external service was part because Links has no way to
call external programs from the server, so creating and displaying charts with
Gnuplot [2] was not an option, and part for its simplicity – the program simply
needs to provide the data; all image processing is offloaded.

Many different kinds of chart can be created and there are tenfold more cus-
tomisation settings, but my use of the service was entirely satisfied by the simple
line-chart. Parameters like scale, axes and colours can be set as extra arguments
in the URL.

The service proved extremely useful, albeit at the cost of a loss of fine-grained
control. One particular quirk was the placement of axis labels – they would often
imply different information to that specified by the data. See Figure 4.2 for an
example.

The sheer amount of data contained in some graphs (for example, performance
histories of machines that have played thousands of games) meant that the URLs
generated began to be far longer than browsers can handle. Tests indicated the
maximum URL length allowed by the API to be 2,076 characters, though there
is no official confirmation of this by Google.1

To circumvent the problem, each function creating a chart has to specify a cut-
off point along with the data. If the length of the data is larger than this
cut-off point then the items will be sampled at a reduced granularity (every
(length(data)/cut-off) + 1 items). Since the charts created are particularly
linear this works well at reducing the length of large charts without losing a lot
of detail.

1As a marker, Internet Explorer can handle URLs up to 2,083 characters long [6].

28 4. EXPLORING MENACE

Figure 4.3: Border weights emphasise how likely the move is to be made.

4.3 Current and historical preferences

Web-Menace provides two ways to examine a Menace machine, giving infor-
mation about the current state of its matchboxes and a visualisation of how its
preferences have changed over the games it has played.

4.3.1 Current preferences

Showing Menace’s current preferences is simply a matter of consulting the
‘matchboxes’ table it uses when playing a game. If Menace has not encoun-
tered the board before it is added to the database and default beads are set.

To emphasise Menace’s preferences its choices are displayed with a border re-
lating to the likelihood of the square being played. The borders range from
thick-red, meaning a probability greater than 0.9, to a very thin dotted yellow,
meaning a probability smaller than 0.1.

Figure 4.3 shows the range of possibilities, and Figure 4.4 shows how this infor-
mation is presented on screen.

4.3.2 Historical preferences

To compare how Menace’s preference for particular squares has altered as it
has played many games I display a table like that shown in Figure 4.5. An entry
in the table is either an X or a O, if the square has already been played, an S if
the square is symmetric with another and can therefore be ignored, or a chart
indicating how the number of beads kept for square has varied over time.

The procedure to create them is as follows:

1. Initialise n lists with the default number of beads for this board (where n
is the number of playable squares);

4.3. CURRENT AND HISTORICAL PREFERENCES 29

Figure 4.4: An example Menace’s current preferences. Note that though there
are seven free squares, three are symmetric with others and can be discounted.

2. Fetch all square/bead information for this machine and board combination
from the matchbox histories table and form a list of (square, bead) tuples;

3. Take the head of the list and add the number of beads to the front of the
appropriate individual square list;

4. Repeat the head items of each of the other square lists;

5. Repeat steps 3 and 4 until there are no more items to process;

6. Reduce the granularity of long lists and finally reverse.

To ensure each chart has the same scale the maximum number of beads in any
matchbox is tracked and the value used as the scale for all charts.

This all occurs on the server to take advantage of its more efficient list processing.2

4.3.3 User Interface

These two sets of information are combined in a page that lets a user step through
a game of noughts-and-crosses, examining a chosen Menace machine’s current
and past preferences at each move.

Given a board the machine might face, its choices and preferences towards them
are displayed as in Figure 4.4, with event handlers attached to each possibility

2Challenged on this assertion I ran two tests: one created the URLs for three charts for
a board that had been encountered 500 times on the client, the second did the same on the
server. Each test was run five times. The average time to completion on the client was just
over twelve seconds, the average for the server was just over three.

The client is hindered by the creation of new lists in steps 3 and 4 of the process – lists on
the client are implemented as Javascript arrays, so appending an item to a list on the client
actually creates an entirely new structure and sorting it runs in the order of n2log(n) operations
rather than nlog(n). The same operations on the server can take advantage of efficient pointer
operations.

30 4. EXPLORING MENACE

Figure 4.5: A Menace machine’s bead history for a board encountered midway
though a game. Each S indicates a square symmetric with another. Hovering
over an image displays it in full and the slider at the bottom moves all images in
tandem. This Menace clearly favours playing in the bottom left-hand corner.

4.4. INDIVIDUAL MACHINE STATISTICS 31

Figure 4.6: The presentation of machine statistics.

set to register a click as a signal to ‘make this move’. Historical preferences are
as pictured in Figure 4.5 and only show a limited section of the chart – hovering
over a single image displays it in full, while a ‘slider’ beneath the table moves
all the images in tandem, hopefully giving a good impression of how the balance
of beads in the entire matchbox changes rather than simply how an individual
bead-count has been affected.

As a final aid to understanding, a number of statistics about the board are dis-
played. These include the number of times the machine has encountered the
board during play and the number of times the machine has won, lost and drawn
after playing each possibility.

If the user steps through to the end of a game its result is displayed and he is
informed of how Menace would be rewarded had just played the game.

4.4 Individual machine statistics

Web-Menace also provides more general information about individual machines,
with data on the number of games played, won, drawn and lost, the machine’s
‘favourite’ and ‘most disliked’ opponents (classed as the top three win/draw and
loss percentages respectively) and a performance chart graphing its progress pre-
sented as shown in Figure 4.6.

32 4. EXPLORING MENACE

5. Observations and Statistics

Donald Michie’s first tournament with Menace spanned 220 games played over
two eight-hour sessions. Adopting a ‘best strategy’, he found the machine quickly
settled into a safe drawing line of play in response, so began using theoretically
unsound tactics to lure the machine into unfamiliar territory, at the risk of losing
the game. These paid off until after 150 games, when the machine coped with any
tactic used against it. [14] Michie continued attempting to outdo the machine,
commenting:

The machine was by then exploiting unsound variations with increas-
ing acumen, so that I would have done better to return to ‘best strat-
egy’ and put up with an endless series of draws. [..] It is likely,
however, that my judgement was sometimes impaired by fatigue.

After the 220th game Menace had beaten Michie eight times in ten so Michie
retired from the tournament, considering the machine to have mastered noughts-
and-crosses.

Fortunately, fifty years of Moore’s law1 and the advent of personal computing
mean such exercises can now be completed in a matter of seconds rather than
days. In this chapter I describe a number of tests performed on the original
Menace and detail its successes and why it can be prone to failure, before
suggesting and testing potential improvements to the machine, in the form of
different reward schemes and alternate initial provision of beads to matchboxes.
At the end of the chapter I give a few comments on how I found working with
Links.

5.1 Testing Menace

All the tests described here were performed through the ‘create-a-machine’ part of
Web-Menace (see Section 3.4). The result graphs were generated with a Python
script that fetched information from the database, formatted it appropriately and
then displayed it with Gnuplot.

1Moore’s law suggests that the number of transistors that can be placed on an integrated
circuit doubles roughly every two years. It was first stated in 1965 [16] and is expected to
continue well into the next decade.

33

34 5. OBSERVATIONS AND STATISTICS

5.1.1 Michie’s Menace

Described below is a set of five tests against opponents of different abilities. Each
set incorporated several Menaces, always playing first and with Michie’s stan-
dard reward scheme, whose results were averaged to account for any statistical
anomalies. The results are presented in Table 5.2 and include the standard devi-
ation to give an indication of consistency. The tests were as follows:

• A: Five lots of 50 games against Billy;

• B: Five lots of 75 games against Gnasher;

• C: Ten lots of 200 games against Danny;

• D: Ten lots of 100 games against Gnasher followed by 150 games against
Danny;

• E: Five lots of 200 games against another new Menace.

Table 5.1: The performance of Michie’s Menace

Average Standard Deviation
Test Played Won Drawn Lost Won Drawn Lost

A 50 41.2 2.8 6.0 2.32 2.32 1.67
B 75 51.8 6.8 16.4 3.66 3.00 2.58
C 200 53.8 123.4 23.0 68.66 67.7 1.79
D 350 71.90 115.0 64.7 15.35 16.4 8.43
E 200 111.6 35.4 53.2 12.22 9.35 12.97

Consistency Menace is clearly very consistent – I was surprised by quite
how low many of the standard deviations are. The results suggest it is efficient at
finding a strategy and exploiting it as much as possible, especially against simple
opponents like Billy and Gnasher.

The low standard deviation for games lost against Danny (Test C) is interesting,
especially when viewed with the information presented in Figure 5.1(b), which
shows the performance graphs for the machines involved. On average, Menace
loses 23 games, always at the beginning of the series. If, in this time, the machine
discovers a strategy for beating Danny it will exploit it until the end, otherwise
it will almost always play to a draw. Experimentation indicated that in these
first twenty games Danny beats Menace so often that its first matchbox empties.
From that point on it plays randomly and will adopt the first strategy it discovers
with a positive reward, be it the good fortune of a win or the likelier draw.

5.1. TESTING MENACE 35

(a) Results of Menace vs. Menace. The top set of lines are the machines
that took the first turn, the bottom set played second.

(b) Results for Menace vs. Danny. Four of the ten machines learned the
strategy to beat him, the rest had to settle for draws. The first 20 or so
games are paramount to Menace’s success.

Figure 5.1: Menace is very consistent against its opponents. ‘Performance’ is
graphed as per Michie’s original reward scheme of 3 points for a game won, 1 for
a game drawn and -1 for a game lost.

36 5. OBSERVATIONS AND STATISTICS

(a) How to beat Danny (b) Menace instead learns to draw

Figure 5.2: Danny, the ‘heuristics’ player (playing O in both games here), is
trivially beatable but Menace has difficulty discovering his weakness and instead
plays for a draw.

Trouble against Danny The results against Danny (Tests C and D) give an
indication of how Menace struggles against better opponents, yet its exertions
feel rather futile to a knowledgeable observer since it is quickly apparent that
Danny is trivially beatable. Figure 5.2(a) gives a possible strategy one could use
against the machine.

Simple probability would suggest that a brand new Menace – one with no
changes made to its matchboxes – should chance upon the strategy to beat Danny
just over once in every hundred games.2 Menace’s trouble is that it is only
provided with twelve beads for the first matchbox and is far likelier to run out of
beads than chance upon this strategy. Finding a drawing strategy is a lot likelier,
but we have already seen how Menace finds a strategy and exploits it as much
as possible, so it ends up rewarding draws so much it doesn’t give itself a chance
to explore further. Both issues are discussed further below.

In Section 3.3.3 I mentioned an incorrect use of random numbers that resulted
in Menace playing in the first available square if its matchbox for a board was
empty. This manifested itself against Danny, when a combination of his skill and
determinism meant Menace would always fluke a drawing strategy after thirty
moves. The thirty moves gave Menace time to lose the twelve beads in its first
matchbox and the twelve beads in its second matchbox (so it would always start a
game by playing in the first two squares of the board) and eight games to discover
a drawing strategy from that more constrained position. This sequence of play

2Three choices of move for the first board, four for the second, three for the third and three
for the fourth: 1/3 ∗ 1/4 ∗ 1/3 ∗ 1/3 = 1/108

5.1. TESTING MENACE 37

is illustrated in Figure 5.2(b).

The advantage of playing first Test E indicates the advantage Menace has
from playing first – on average in a series of games between two Menaces the
first player wins half the games and draws the next quarter. The difference is
shown most clearly in Figure 5.1(a). The worst performer of the second players
was beaten so many times it had few beads in its matchboxes and essentially
played randomly. One would expect results to eventually tail off into a series of
draws.

5.1.2 Adjusting Menace

Alternate reward schemes Michie’s reward scheme was designed for simplic-
ity. He reasoned that if a machine lost after playing its fourth move, the move
was poor without qualification and there would be no point ever repeating it,
so giving each possible play at Menace’s fourth move a single bead meant that
removing it would banish the move forever. Working backwards from the fourth
move he decided a machine should have two tries for moves encountered on its
third turn, three for those encountered on its second move and four for those on
its first.

If winning is paramount and Menace is playing an opponent with an inherent
weakness, like Danny, one might consider only rewarding wins. However, such a
strategy would make Menace a far slower learner against an intelligent opponent,
and since noughts-and-crosses is a zero-sum game – if both players play perfectly
the game can only be drawn – if Menace were played against an opponent with
perfect strategy it would be unable to adjust its matchboxes, forever remaining
a random player.

More interesting would be to weight reinforcements according to the stage of the
game a matchbox was used – the first move of a game clearly has less influence
over the result than the last, and rewards could be weighted appropriately.

Rewards based on a succession of games It often felt that Menace was
too ready to reward itself for ‘yet another’ draw, and sometimes did so to the
point that it was extremely unlikely to play a move clearly advantageous to an
observer. A sensible tweak would be to reinforce identical results either up to
a limit, after which no adjustments are made, or to use diminishing returns, so
that successive games add slightly fewer beads to the matchbox.

Rewarding a machine for drawing after a succession of wins can be considered
rather nonsensical – it would be wiser to reward a draw after a series of losses

38 5. OBSERVATIONS AND STATISTICS

instead. Similarly, a win after several losses should be reinforced a lot more
strongly than one after many other wins.

Bead provision Play Menace against any machine of a decent standard and
it is quickly apparent that the initial provision of four beads for each of the three
playable squares of the first move of the game is thoroughly insufficient – once
it has lost twelve games the matchbox is empty and Menace resorts to playing
randomly.

Michie himself observed this, writing:

It turned out that the allotment of only twelve beads to the first
box [..] gave the machine scarcely sufficient resources to withstand
repeated discouragements in the early stages of play against an expert.
[14]

Such scenarios suggest a lighter penalty for losing would assist Menace.

Testing these suggestions I used the features for customising new Menace
machines to test the suggestions of alternate reward schemes and bead provisions.

Rewards were set to:

• Five beads for all moves of a win;

• No beads for the first move for a draw, one bead for the rest;

• Less two beads for the third move of a loss, less one for the rest.

My reasoning being that a win is always worth investigating so should be rewarded
highly, the first move of a draw counts so little towards the eventual result that
it should not be rewarded at all, and that Menace often lost games because of
a poor choice of its third move, so that should be penalised more.

Initial bead provisions were set to 12 for the first matchbox, 8 for the second, 5
for the third and 1 for the fourth, to give the machine plenty of time to explore
and avoid the twenty-game limit encountered by the standard Menace.

A set of ten machines were tested with 200 games each against Danny. The
results are presented in Table 5.2, with those from Test C above included for
comparison.

There is clearly an improvement to Menace’s performance, likely because of the
larger number of beads it is allocated for its opening moves. It is worth noting
that only four of the ‘standard design’ machines managed to win any games at
all, while every tweaked Menace won at least one game (the lowest number won
was 5, the highest 132).

5.2. WORKING WITH LINKS 39

Table 5.2: The tweaked Menace’s performance against Danny.

Average Standard Deviation
Menace Played Won Drawn Lost Won Drawn Lost
Standard 200 53.8 123.4 23.0 68.66 67.7 1.79
Tweaked 200 86.0 59.8 54.2 41.13 32.14 9.53

5.1.3 In Summary

As I developed Menace it often appeared rather clumsy – it would regularly
surprise myself and others by giving the impression of being a competent player
before hopelessly losing to a straight line across the bottom of the board.

I feel the tests described in this section show Menace in a different light. It is
effective at finding strategies to cope with the tactics of its opponents and with
a little tweaking can often find winning plays too. Of the adjustments suggested
I believe those involving rewards based on a past succession of games would find
most success. It would be an interesting addition to Web-Menace.

5.2 Working with Links

Since Links is a very young language I encountered several bugs and mishaps
through the development of Web-Menace. Often these were trivial oversights,
like not parsing negative numbers sent to the server, and in all cases the Links
team were very quick to assist. Here I give a few comments on particular issues
I faced.

Learning Perhaps the biggest obstacle to learning Links was the lack of docu-
mentation available. There is a ‘Quick help’ page on the Links website [5] that
proved extremely useful but at times was incomplete or gave outdated informa-
tion – from reading it I began to use the l:name attribute to identify elements
of forms, only to be told later that it shouldn’t be used since the concept was
flawed.

Debugging A particular frustration of Links is the difficulty of debugging pro-
grams. The compilation of client-side code into a continuation passing style
renders it practically unintelligible, and error messages are often vague or their
guidance misplaced. One example I encountered late in development simply read
“Variable ‘name’ does not refer to a declaration.” When name is a variable used
many times in 3,500 lines of code this isn’t as helpful as it could be! The Firefox

40 5. OBSERVATIONS AND STATISTICS

extension Firebug [1], a tool with excellent facilities for working with Javascript,
is an invaluable aid to the Links programmer.

Performance Difficulty getting to grips with the language aside, the single
biggest issue I faced was that of speed. When Links runs a program it must
parse it, infer types, convert it to an intermediate representation (IR) and then
interpret the appropriate part of this IR. Since the client persists it need only ever
do this once, but as Links keeps no state on the server (to keep programs scalable)
it must do this every time there is a context switch. When the program is small
this happens fairly quickly, but attempt it with anything large and the program
becomes very, very slow. In the case of Web-Menace this was particularly
apparent when Menace was playing a move – trips to the server and back took
up to eight seconds!

The Links solution is to precompile the program. This caches the IR, so the
process does not need to occur on every trip to the server, and made a drastic
improvement to Web-Menace’s performance, reducing the time for a Menace
move by over a factor of twenty.

Precompiling does not solve all speed issues – Links must still compile and type
the program when it is first run, and this is no quick process itself, taking in
the region of thirty-five seconds to display the individual ‘Play and create a
Menace’ page, and up to three minutes to display the combined program. Such
slow loading made testing individual portions of programs rather arduous and
sometimes intensely frustrating.

Program Structure Combining each part of Web-Menace – playing, creat-
ing, exploring, statistics and history – into one file certainly makes using the
program a lot faster once it has loaded, but at the cost of breaking the browser’s
‘back’ button, something many human-computer interaction experts would con-
sider a major flaw. Though the design is my choice I feel my hand was forced by
the extremely long loading times that hinder quickly switching between pages.

Finally Once these issues were surmounted and Links’ features and quirks
grasped, working in Links could really be quite fun. Towards the end of the year
I found prototyping new features quick, elegant, and easily integratable with the
rest of the Web-Menace program and it should be noted that charts and CSS
styles aside, everything presented by the Web-Menace program was written in
the language.

6. Conclusions

Menace is clearly no wizard at noughts-and-crosses – it struggles against intel-
ligent opponents and is often content with draws against those simpler. However
to knock it in such a fashion is to miss the point of its conception: Donald Michie
created the machine in 1959, a time when many were still convinced computers
would never be able to beat humans at chess, or perhaps even play the game,
while others were imagining machines would be assisting every facet of life within
two decades. Michie’s reason for creating Menace was to provide a simple ex-
ample of a learning machine to his artificial intelligence-sceptic friends; it was not
intended as a revolutionary breakthrough in machine learning.

I believe the construction of Web-Menace demonstrates these features well. It
is an intuitive, visually attractive demonstration of the original Menace that
allows users to play the machine and observe how it copes with varying tactics
while explaining the processes used by Michie, giving a clear indication of when
Menace is successful and when it is at the limit of its competence.

Further achievements of the project include the capability for users to create and
train their own machines, with provision made for customisation by allowing al-
ternate reward schemes and different initial allocation of beads to matchboxes.
These features were used extensively for the tests on Menace described in Chap-
ter 5 and assisted some of the suggestions for small improvements to the machine,
described later in the same chapter.

There is plenty here that could be extended for future work. Some of the
suggested improvements that Web-Menace does not provide for, like reward
schemes based on a past history of results, would doubtless have large effect
on Menace’s capabilities. The matchbox model could also be extended to
other games, for example noughts-and-crosses on a larger scale, or to miniature
draughts, and its performance assessed there. For a while an implementation
of Martin Gardner’s Hexapawn [12], a matchbox learner on a smaller scale, was
one of the project objectives but time did not permit its inclusion. I believe it
would be an interesting addition to any program attempting to demonstrate the
workings of a rudimentary trial-and-error machine.

Using Links proved an interesting experience and I look forward to seeing how its
development progresses. Its management of the three tiers of web-programming
felt logical and transparent, its provision for concurrency was enjoyable and thor-
oughly intuitive, and its database tools prove a powerful and accessible tool for
the web-programmer, especially when combined with its support for query ab-
straction. Should support for other basic SQL operators like ‘count’ and ‘group
by’ be included this will be even more apparent.

41

42 6. CONCLUSIONS

Bibliography

[1] Firebug. An extension for Firefox to aid web-development. Available from
http://getfirebug.com/.

[2] Gnuplot. A portable command-line driven interactive data and function
plotting utility. http://www.gnuplot.info/.

[3] Google Chart API. http://code.google.com/apis/chart/.

[4] The Links Homepage. http://groups.inf.ed.ac.uk/links/.

[5] Links Syntax. Website, retrieved 10/03/2009,
http://groups.inf.ed.ac.uk/links/quick-help.html.

[6] Maximum URL length is 2,083 characters in Internet Explorer. Microsoft
help page, retrieved 14/03/2009
http://support.microsoft.com/kb/q208427/.

[7] Wordpress. A popular blog engine.
http://www.wordpress.org.

[8] The Yahoo! User Iinterface Library (YUI). Website, retrieved 10/03/2009,
http://developer.yahoo.com/yui/.

[9] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web
programming without tiers. 2006.

[10] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. The essence
of form abstraction. In Sixth Asian Symposium on Programming Languages
and Systems, 2008.

[11] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. An idiom’s
guide to formlets. Technical report, University of Edinburgh, 2008.

[12] Martin Gardner. Further Mathematical Diversions, pages 90–102. Penguin
Books, 1969.

[13] James Lighthill. Artificial Intelligence: A General Survey. Artificial Intelli-
gence: A Paper Symposium, 1973.

[14] Donald Michie. Trial and Error. Penguin Science Survey, Part 2, 1961.

[15] Donald Michie. Experiments on the mechanization of machine learning. Part
1: Characterization of the model and its parameters. The Computer Journal,
6:232–236, 1963.

43

http://getfirebug.com/
http://www.gnuplot.info/
http://code.google.com/apis/chart/
http://groups.inf.ed.ac.uk/links/
http://groups.inf.ed.ac.uk/links/quick-help.html
http://support.microsoft.com/kb/q208427/
http://www.wordpress.org
http://developer.yahoo.com/yui/

44 BIBLIOGRAPHY

[16] Gordon Moore. Cramming more components onto integrated circuits. Elec-
tronics Magazine, 1965. Available from ftp://download.intel.com/museum/

Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf.

[17] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach,
Second Edition, chapter 17, pages 614–618. Prentice Hall, 2003.

[18] BCS Computer Conservation Society. Recollections of Early AI in Britain:
1942-1965. Video, 2002. Available from http://www.aiai.ed.ac.uk/events/

ccs2002/.

[19] Adit Software. A MENACE Simulation. Website, retrieved 12/03/2009
http://www.adit.co.uk/html/menace_simulation.html.

[20] The Times. Professor Donald Michie. July 2007. Webpage, retrieved
12/03/2009
http://www.timesonline.co.uk/tol/comment/obituaries/article2061886.

ece.

[21] Cheknokov Yuriy. Matchbox Educable Noughts and Crosses Engine (MEN-
ACE) in C++, 11 2007. http://www.codeproject.com/KB/cpp/ccross.aspx.

ftp://download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf
ftp://download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf
http://www.aiai.ed.ac.uk/events/ccs2002/
http://www.aiai.ed.ac.uk/events/ccs2002/
http://www.adit.co.uk/html/menace_simulation.html
http://www.timesonline.co.uk/tol/comment/obituaries/article2061886.ece
http://www.timesonline.co.uk/tol/comment/obituaries/article2061886.ece
http://www.codeproject.com/KB/cpp/ccross.aspx

	Introduction
	Background
	Menace
	The Menace Machine
	More formally
	Related Work

	Links
	Concurrency
	Database interaction

	Creating Web-MENACE
	A Brief Overview
	Program Setup
	The User Interface
	Storing Data

	Playing a Game
	Computer Opponents
	The Manager
	Menace's Turns
	The End Game

	Creating Other Menaces
	Training a machine

	Exploring MENACE
	An Overview
	Charts
	Current and historical preferences
	Current preferences
	Historical preferences
	User Interface

	Individual machine statistics

	Observations and Statistics
	Testing Menace
	Michie's Menace
	Adjusting Menace
	In Summary

	Working with Links

	Conclusions
	Bibliography

